

PLATINE DE TEST BF MULTI-FONCTIONS

MAGNÉTIQUES

Oui ! XIIInX vous offre aujourd'hui

les meilleures garanties pour l'intégration de vos PALs

Technologie

Routage garanti à 100 % avec utilisation

de la logique à 100 %

Flexibilité

Verrouillage du brochage lors des modifications du design

Performance

Temps de propagation: 5 ns pin-to-pin

Économie

Logiciel X-EPLD: 500 F H.T. seulement

Pour vos EPLDs aussi, exigez la griffe

The Programmable Logic CompanySM

Informations et Data Book sur demande à : Xilinx Sarl 21, rue Albert Calmette - 78350 Jouy-en-Josas - Tél.:(1) 34 63 01 01 - Télécopie:(1) 34 63 01 09

Xilinx est distribué en France par Avnet EMG - Paris Tél.: (1) 49 65 25 00 Rennes: 99 83 84 85 - Toulouse: 61 39 21 12 - Bordeaux: 56 55 92 92 Grenoble: 76 90 11 88 - Nantes: 40 63 23 00 - Saint-Étienne: 77 92 77 66

SOM Maire

ELECTRONIQUE APPLICATIONS

MENSUEL édité par PUBLICATIONS GEORGES VENTILLARD S.A. au Capital de 5 160 000 F 2 à 12, rue de Bellevue, 75019 PARIS Tél.: 44.84.84.84 - Fax: 42.41.89.40 Télex: 220409 F

Principaux Actionnaires :
- M. Jean-Pierre Ventillard
- Mme Paule Ventillard

Président-Directeur-Général, Directeur de la Publication : Jean-Pierre VENTILLARD

Directeur de la Rédaction : Bernard FIGHIERA

Rédacteur en Chef : Claude DUCROS

Marketing/Ventes: Jean-Louis PARBOT Tél.: 44.84.84.55.

Création maquette : Rachid MARAI

Inspection des Ventes : Société PROMEVENTE - M. Michel IATCA 11, rue de Wattignies - 75012 PARIS. Tél. : 43.44.77.77 - Fax : 43.44.82.14.

Publicité:

Société Auxiliaire de Publicité 70, rue Compans, 75019 PARIS Tél.: 44.84.84.85 C.C.P. PARIS 37 93 60

Directeur commercial : Jean-Pierre REITER Chef de publicité : Francine FIGHIERA

Assistée de : Laurence BRESNU Abonnement : Marie-Christine TOUSSAINT

Tél. : 44.84.85.16

Voir notre tarif «spécial abonnement». Pour tout changement d'adresse, envoyer la dernière bande accompagnée de 2,80 F en timbres.

IMPORTANT: ne pas mentionner notre numéro de compte pour les paiements par chèque postal.

Electronique Radio Plans décline toute responsabilité quant aux opinions formulées dans les articles, celles-ci n'engageant que leurs auteurs. Les manuscrists publiés ou non ne sont pas retournés. «La loi du 11 mars 1957 n'autorisant aux termes des alinéas 2 et 3 de l'article 41, d'une part que «copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective» et d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, «toute représentation ou reproduction intégrale, ou partielle, faite sans le consentement de l'auteur ou de ses ayants-droit ou ayants-cause, est illicite» (alinéa premier de l'article 40). Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles 425 et suivants du Code Pénal».

Ce numéro a été tiré à 40 000 exemplaires Dépôt légal novembre 94 - éditeur 1758 Mensuel paraissant en fin de mois. Distribué par S.A.E.M. Transports-Presse Mise en page : J.-L. C. Photogravure : CJC 75011 PARIS Photo de couverture : E. Malemanche.

Numéro 564 - Novembre 1994

ISSN 1144-5742

ETUDES ET CONCEPTION

23 PLATINE DE TEST MULTI-FONCTIONS

REALISATION

33 CONVERTISSEUR CC-CC FAIBLE INTENSITÉ
39 COUPLEUR DIRECTIONNEL -10 dB, 500 MHz - 1,2 GHz
45 LPT DAC : CONVERTISSEUR NUMÉRIQUE-ANALOGIQUE SUR PORT PARALLÈLE
55 DISPAC : DISPATCHING AUDIO
65 CARTE ESPION I2C
81 DOMESTICUS : CARTE SON DÉPORTÉ

TECHNIQUE

11 SIMULATION SPICE DES COUPLAGES MAGNÉTIQUES

MESURE ET INSTRUMENTATION

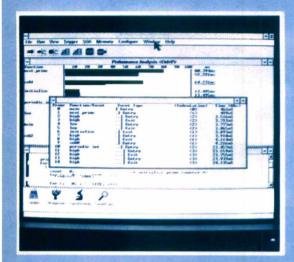
19 L'INSTRUMENT VIRTUEL ADC100 49 L'ANALYSEUR DE SPECTRE RF U4941 ADVANTEST

CIRCUITS D'APPLICATION

87 APPLICATIONS DES RÉSONATEURS À ONDES DE SURFACE

IDÉE ET MÉTHODE

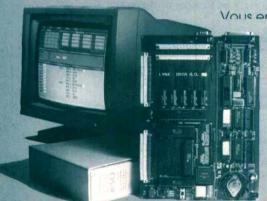
41 RACINES CARRÉES ET DISTANCES SUR µC 8 BITS


INFOS

74 NOUVELLES COORDONNÉES ALTAÏ FRANCE LA VALISE D'ACCESSOIRES DE CABLAGE RICHKO RÉGULATEUR 15/450V 30mA LR645 SUPERTEX PROCÉDÉ DE CODAGE HAUTE SÉCURITÉ 78 MISES AU POINT L'INSTRUMENTATION VIRTUELLE SUR PC CHEZ MULTIPOWER

Ont participé à ce numéro : J. Alary, F. de Dieuleveult, C. Djabian, J. Garbay, A. Garrigou, G. Girolami, P. Gueulle, P. Oguic, P. Morin, A. Rivat, J.-L. Vern.

SYSTEME DE DEVELOPPEMENT SOUS WINDOWS POUR 80C51 DE PHILIPS



Ashling Microsystèmes 2, rue Alexis de Toqueville Parc d'Activités Antony 2 92183 ANTONY

Téléphone: (1) 46 66 27 50 Télécopieur : (1) 46 74 99 88

- Environnement de développement complet sous Windows 3.1.
- Déhogage en langage évolué, émulateur temps réel analyses de performance, couverture de code, trace de fonctions C, programmation EPROM et microcontrôleur.
- Le seul système de développement complet pour toute la famille 80C51 de Philips : 80C31/32/51/52/528 87C51/52/528 83C552/562/652/654 83C751/752 83C592/598 83C550/575 83C053/054/055 83C851/852/855 83C558 83CL410/580/782/168...
- Des systèmes de développement conçus avec la coopération de Philips.
- Le seul fournisseur de systèmes de développement certifié ISO9001.

Kits up à environnement DOS/WINDOWS

Voi is ansaignaz los microprocococuro? Alors, à prix équivalent (et même souvent inférieur à celui de nos concurrents) pourquoi ne pas prendre les kits Prolynx à environnement DOS et/ou Windows?

Choisissez donc le "nec plus ultra" des kits.

Prolynx 5.A. 14, rue Gaspard-Monge Z.A. de l'Armailler 26500 BOURG-lès-VALENCE (France)
Tol: 75 83 27 25 Fax: 75-00-59-70

Extrait de notre liste au 01-11-1994 - plus de 100 appareils en stock - Domandoz INFO-TEST au 90.87.21.87

ktronix tiroir générateur FG504 40 MHz

euf HT: 30600 F

Notre prix: 6500 F

ktronix AM 503S système sonde urant avec A6303, AM503,

uf HT: 44000 F

Notre prix: 16500 F

liwattmètre Anritsu ML83A IEEE sonde 0.05 à 18 GHz

- 20 à + 20 dB uf HT : 35000 T

Notre prix: 9500 F

nérateur wobulateur Giga 2218 2 - 18 GHz IEEE

uf HT: 105000 F

Notre prix: 35000 F

tronix reflectometre 1502C ec imprimante et batteries uf HT: 78000 F

Notre prix: 28500 F

Tektronix 492 analyseur de spectre 10 K - 20 GHz Neuf HT: 220000 F

Notre prix: 69000 F

Racal dana générateur synthétisé 1 5-520 MH

Neuf HT: 38000 F

Notre prix: 9900 F

HP 8590A analyseur de spectre 10 KHz à 1.5 GHz

GPIB

Neuf HT: Z0000 F

Notre prix : 42000 F

Tektronix oscilloscope numérique TDS 320 2 x 100 MHz opt 14 IEEE (appareil de démo garanti 3 ans) Neuf HT: 27000 F

Notre prix: 22900 F

Analyseur de spectre Advantest R 3361 avec IEEE, tracking 9 KHz à 3.6 GHz

Neuf HT: 142000 F

Notre prix: 89500 F

Tektronix oscilloscope 2213A 2 x 60 MHz

Neuf HT: 13000 F

Notre prix: 6200 F

avec sondes neuves! Tektronix oscilloscope 2245A 4 x 100 MHz, curseurs volts

& temps

Neuf HT: 18000 F

Notre prix: 11800 F

HP oscilloscope numérique HP 54501A 4 x 100 MHz + HP-IB + 2 sondes neuves! Neuf HT: 30600 F

Notre prix: 14500 F

Philips générateur synthétisé programmable + IEEE 0 à 50 MHz sinus carré triangle Neuf HT: 42000 F

Notre prix · 19850 F

Enregistreur Yokogawa 8100 8 voies jeux de plumes neuves Neuf HT : 60000 F

Notre prix: 18500 F

Analyseur logique Tektronix 32 voies 25 et 100 MHz 2 sondes P6444 & menu en français Neuf HT: 38000 F

Notre prix: 14500 F

Analyseur de spectre l'ektronix 2710 10 KHz à 1.8 GHz option résolution

Neuf HT: 100000 F

Notre prix: 44500 F

Multimètre numérique HP 3455A 6 digite 1/2 IEEE Neuf HT: 64000 F

Notre prix: 12600 F

Banc Rohde & Schwarz CMS 50 0.4 à 1 GHz Neuf HT: Z0000 F

Notre prix: 35500 F

Bruel & Kjaer 2143 analyseur audio temps réel 0 à 22.1 KHz Neuf HT: 98000 F

Notre prix: 39000 F

Prix HT sous réserve de disponibilité à la commande. Transport en sus. Délai de livraison 48 h pour le matériel en stock. Photos non contractuelles. Prix neufs indiqués sous réserve de modification récente.

Tél. 99.87.21.87 - Fax : 99.87.24.00

14 Rue ABEL **75012 PARIS** TEL:(1) 43 44 55 71 5 Lignes groupées FAX:(1) 43 44 54 88

HORAIRES: Lundi: de 14 H à 19 H 00 Mardi au samedi inclus : de 10 H à 19 H 00 Samedi: de 10 H à 13 H et de 14 H à 19 H 00 METRO : Gare de Lyon

Vente par correspondance: Port: Les colis volumineux
PTTen recommandé: 38 F si <2Kg, de 2à5 Kg50F, >5 Kg75F Tarif: TEL

TRANSISTORS

	AND THE PROPERTY.
AT 42085 MSA 0404(MMIC)	26,00 I
MSA 0404(MMIC)	44,00 I
BC 547C	0,70 I
BC 550C	0,801
BC 547C BC 550C BC 557C BC 560C BDV 65B	8-38
BDV 65B	15.00 F
BD 135	2.00 I
BD 135 BDX 66C - 67C	20.00 I
BF 199	2.00 I
BF 245 BF 469 BF 470	4.60 I
BF 469	2,70 I
BF 470	2,70 I
BF 960	9.501
BF 981 BFR 91	9.50 1
BFR 91	5,00 1
BFR 96	11,001
BS 170	16 90 1
BU 208 D	10,801
IRF Z 20 IRF 9630	20,00 1
IDE 630	14.00 I
IRF 2 34 > IRF Z 30.	10.00 I
2N 2219 A	2.50 H
2N 2219 A 2N 2222A Plact 2N 2222A Métal	0.70 I
2N 2222A Métal	1,60 H
2N 2369 A	2,80 H
2N 2905A	2,35 I
2N 2907A Plast	0,70 I
2N 2907A Métal	1,60 I
2N 2907A Métal 2SJ 50 2SK 135	55,00 I
2SK 135	54,00 H
J 310	
U 310	18,00 I

DIVERS

PONT 1.5 Ampère

1 O111 1,5 Ampere 2,001
Résistances 1/4 W 0,15 F
4,7 µF 63 V chimique 0,90 F
Epoxy prés 100 X 1609,00 F
Condos céramiques0,35 F
Inter miniature 5.20 F
CordonSecteurNoir: 5.00F
IN 4007 IN 4148
1N 41480,25 F
Alim 3à12 V:1000 mA 39,00 F
Péritel male 3,00 F
Péritel femelle cable13,00 F
Péritel femelle pour CI4,50 F
Cable péri 8 C 5 00 F
Support tulipe0.14 F/ point
Soudure 60% 500 g 40,00 F
- 68705 P3S -

A l' unité: 47,00 F Par 13: 45,00 F - DL 470 -

Promo : 6,50 F QUARTZ 3,27 et 4 Mhz . 3,90 F

MEMOIRES

Barrettes SIMN	1 70 nS
1 M x 9 3 pavés:	. 290,00 1
1 M x 9 9 pavés:	. 390,001
4 M x 9 3 pavés:	1250,001
1 M x 32 (= 4 Mo)	1100,001
$4 \text{ M} \times 32 (= 16 \text{ Mo})$	3990,001
RAM DVNAM	IQUE
41 1000-70 (1M x1):	54,00 I

44 256-70 (256 K x 4): ..54,00 F 41 256-80 (256 K x 1): . 17,00 F

RAM STATIQUE

128 K x 8 621000-10	110,00 F
32 K x 8 62256-10.	
8 K x 8 6264-10	25,00 F
Q K x Q Hauto vitocco	25 nS 1
CY7C185-25	28,00 F
32 K x 8 Haute vites	se 20 nS:
CY7C195-20	54,00 F
EPROM	
2716	36,00 F

27C64-20 25,00 F 27128-3 26,00 F 27C256-15 28,00 F 27C512 15 34,00 F 27C1001-12 52,00 F 27C1001-20 49,00 F **EEPROM**

NMC 9306 ou 9346......5,00 F

KIT Emetteur TV

Kit Emetteur vidéo AM pour visualisation directe sur téléviseur en UHF.

Ce kit vous permet l'émission d'un signal vidéo en UHF d'une puissance de 10 à 50 mW . (Ideal pour l' utilisation avec un magnétoscope ou une mini caméra vidéo.)

430,00 F TTC

FREQUENCEMETRE A 68705 P3 . RP 533

450,00 F TTC

PROGRAMMATEUR

DE 68705 P3S

190,00 F TTC

avec le support à force d'insertion nulle

Fréquencemètre à affichage digital 10 digits LCD pouvant mesurer les fréquences jusqu' à 2,5 Ghz. Il comprend 2 entrées: - Une HF et une VHF/UHF.

Livré avec coffret et alimentati

LES KITS

320,00 F TTC DECODEUR TELETEXTE

PROGRAMMATEUR

d' EPROM pour PC

Programmez de la 2716 à la 271001. Carte au format ISA pour bus PC Livrée avec 1 Support TEXTOOL extensible à 4, accessoires et SOFT.

680,00 F TTC

LECTEUR DE

68705 P3!! Ce KIT permet la lecture d' un 68705 déja programmé, l'extraction du programme et la programmation d' une Eprom

Kit CS 945 complet 690,00 F Option coffret percé: + 60,00 F

La Famille d' EMULATEURS CHIP SERVICE

Caractéristiques communes:

Permet le débogage source d' un programme par uivi pas a pas, trace, Go. Utilisation simple performante par l'emploi d'un <u>logiciel fenètré rapide</u>. Points d' arrêts sur: * Code

* Position mémoire.

* Valeur mémoire. Cette famille d' émulateurs convient dans 90% des

utilisations du "controleur qu' elle remplace. Il faut garder à l'esprit le fait qu'il ne fonctionnent pas en temps réel.

Nouveauté! Emulateur en Temps réel pour 80C51,52 31,32: 3990,00 F TTC

Nouveau !!

Relais de commutation

HAUTE FREQUENCE

Très haute fiabilité

Idéal pour émission, réception,

commutation d'atténuateurs, appareus de mesures HF.

- 1 RT bifurqué - Bobine: 12V 720 Ω. - Pmax: 1W Dc, 10W à 900 Mhz

Diaphonie: 60 db à 900 Mhz Insertion: - 1db à 900 Mhz

Pu: 38,00 F

Spécifications techniques:

Les modèles:

9	
	Emulateur 68705 P3 800.00 F Emulateur 68HC 11 (en préparation)
	800,00 F
	Emulateur ST 6225 800,00 F
	Emulateur ST 6220 800,00 F
	Emulateur 80C51, 52, 31,32
t	800,00 F
	Emulateur PIC 16C54, 56, 57, 71
	800,00 F Emulateur PIC 16C54, 56, 57, 71 (en préparation)

Tous nos émulateurs sont fournis avec doc. Softs et sonde connectable au port parallèle.

Pour motoriser à moindre frais une parabole fixe, une amenne TV ou RadioAmateur. analogiques. 2 Entrées/ Sorties logiques Connection au port série de votre PC Commande à partir de tout langage

ROTOR D' ANTENNE

Livré complet en coffret

Couple de rotation: 220 Kg.cm

450,00 F TTC Port PTT 51.00 F

Carte E/S Série en Kit

16 Entrées/ Sorties logiques ou

ou d' un logiciel de communications Utilisations nombreuses: mesure alarmes, pilotage d' automates etc... Disquette démo et tests fournie.

Promo: 550,00 F Augmentez les performances haut débit du port série de votre PC en remplacant le,82c 50 ou 82c 450 d' origine par le nouveau 16c 550 (Dil 40 pattes).

Pu 85,00 F

PROMOTION AFFICHEURS

EPSON ou Fonctionne en + 5 V Doc fournie. SAMSUNG

SPECIAL - VHF - UHF RADIOAMATEURS

Transistors:	
AT 42085(Nf à 2 Ghz: 1,9 db)	26.00 F
BF 960	9.50 F
BF 981	9.50 F
BFR 90	
BFR 91	
BFR 96	
2N 2369A	2.80 F
2N 3866	18.00 F
2N 4427	12.00 F
MDE 227. (VIIIE 4 W)	52 00 E
CF 300: GaAS Fet = MRF 966	12,00 F
CLY 5(Mos 1W UHF SHF)	190,00 F
J 310	6,00 F
U 310	18,00 F
Mélangeurs:	
SBL1 = MB 108 = S2: Spécification	ns
(RF/LO= IF/LO = 500 Mhz)	75,00 F
TFM 150 : Spécifications (RF/LO	2 Ghz
IF/LO 1 Ghz)	
Résonnateurs barreau céramique	
900 Mhz (Pour scanner ERP)	60,00 F
Ferrite pour self choc UHF: Relais 12V 1 à 900 Mhz 10W:	1.80 F
Relais 12V 1 a 900 Mhz 10W:	38,00 F
Varicaps:	
OF 643.(UHF 2,2 à 17 pF)	
BB 104 (Varicap vhf double)	
BB 105G(VHF 2,2 à 12 pF)	4,80 F
BB 833. (UHF Scanner ERP)	

I in falmer
Linéaires:
MC 145151-2PLL Parallèle 75,00 F
MC 145152-2PLL // dual module 59,00 F
MC 145158 PLL Série dual module40,00 F
MC 3362 34,00 F
MAR 2 (0-2,6 Ghz G= 12 db P1= 5 dbm) 28,00 F
MAR 3 (0-2,5 Ghz G= 12 db P1= 10 dbm) 30,00 F
MAR 6 (0-1 Ghz G= 18,5 db P1= 2 dbm) 29,00 F
MAR 7 (0-2 Ghz G= 13 db P1= 5,5 dbm) 35,00 F
MAD Q (6 3 Ch. C 3F JL P1 13 JL) 42,00 F
MSA 0404E/S 50 Ω G 10 db 44,00 F
MB 506Prédiviseur 2,5 GHz 22,00 F
MB 501 Prediv Double module 1,2 Ghz 18,00 F
NE 602 18,00 F
NE 605 55,00 F
μPC 1678G = 1677 (24 db 0,1 à 1,1 Ghz) 60,00 F
Modems:
AM 7910 = EF 7910 90,00 F
TCM 3105 N 84,00 F
Filtres:
TOKO: nombreuses valeurs ex:
LIVICO 4102(400 KBZ) 15,00 F
Quartz 10,245 Mhz: 9,00 F
Selfs miniatures fixes: 3,50 F
VK 200:(Choc VUHF) 3,50 F
CFU 455 E (Bp 7.5 Khz à -6 db) 12,00 F
Nos tarifs seront réactualisés en permanence p

- 1 ligne 16 caractères :
94,00 I
- Idem rétroéclairé
150,00 I
- 2 lignes 16 caractères
139,00 I
-Idem rétroéclairé
190,00 1
TRANSFOS
- 9 V 5VA:32,00 F
-12 V 5VA:32,00 F
-24 V 5VA (pour program-

-24 V 5VA (pour program- mateur) 36,00 F	
AJUSTABLES	
Carbone 3/4 tour; vertical ou horizontal toutes valeurs Pu	
Multitours . Toutes audinos	

ı	mateur) 36,00 F
	AJUSTABLES
	Carbone 3/4 tour : vertical ou horizontal toutes valeurs Pu
	Multitours: Toutes valeurs Vertical:

LINEAIRES

AD 7541 AK 12 bits 100 nS . AD 7237 Double DA 12 Bits AD 558	91.00	F
AD 7227 D. H. DA 12 Die	220,00	È
AD 7237 Double DA 12 Bits	220,00	L
AD 558	90,00	H
C13 4053	4.50	L
CD 4060	2 50	Ē
CD 4000	7.00	H
CD 4060	2,50	Ť.
MC 1488	2,50	ľ
MC 1489	2,50	F
MC 1496	6.00	F
MC14543	7,00	Ē
MC14543 MC14553	12,00	È
MC14333	12,00	ï
MAX 232	15,00	H
MM 53200 :	. 35.00	F
MAX 232 MM 53200 : LM 35 CZ capteur T° . LF 353	43 00	ĥ
LE 252 CZ Capteur I .	4,50	ŧ.
LM 324	4,50	ŗ
	1,00	H
LM 336	10,00	r
LM 386	. 11,50	F
LM 386 LM 723	2.50	F
LM 1458	3 50	ĥ
LM 1881	40,00	÷
LM 1881	. 40,00	ŗ
NE 555	2,00	F
NE 567	4.00	F
NE 5532	15 50	F
OP 27 CP	20,00	È
NE 5532 OP 27 GP PCF 8574 PCP 8584 SAA 1101 SAA 5249	40,00	F
PCF 8574	. 40,00	L
CA A 1101	40.00	į,
SAA 1101	49,00	r
SAA 5249	149,00	F
SL 486 TDA 1510	29.00	F
TDA 1510	27,00	Ē
TDA 2505	17,00	î,
TD 1 2040	10,00	Ŧ,
TDA 3048	. 19,00	ľ
TDA 2595	50,00	r
TDA 5850 TDA 2004	. 21.00	F
TDA 2004	21'00	Ē
TDA 2005	24,50	î.
1DA 2005	. 24.30	ľ
TDA 2005	12,00	ŧ,
ICM 7555	. 12,00	ŗ
U 2400	. 25,00	ľ
U 2400 UVC 3130	200,00	F
TEA 5114	13.00	Ē
ISD 1016 AP	08 00	È
ICD 2560	215,00	F
ISD 2500	215,00	ľ
ICL 7106	49.00	п
161 7107	65 M	10
ICL 7660 = MAX 660	20,00	F
ICL 7107 ICL 7660 = MAX 660 XB 2206	20,00	i.
MC 34060 AP occill	otour	Ž
diagonaga i daga	ateur 12 50	d
ICL 7660 = MAX 660 XR 2206 MC 34060 AP ocsill découpage + docs UPC 1678 G = 1677	. 12,50	Ľ
UPC $1678 \text{ G} = 1677$	60,00	F
	100000	
PROMO!! -oo		

PROMO!! 500 mA 18 F ALIMENTATIONS Par 10: 17 F

UCONTROLEURS 80C32......59,00F 80c 55299.00 F 8052 AH-basic V 1,1.....189,00 8255. 28,00 F ST 62T25 OTP 70,00 F ST 62E25 Eprom 160,00 F 87C51 Eprom eff 180,00 F 68705 P3S. 47,00 F PAL 16 US PSN, 11,00 F GAL 16 V8: 13,00 F

QUARTZ

3,2768 Mhz	
4,000 Mhz	3.90 F
10,24 Mhz	9,00 F
10,245 Mhz	9,00 F
15,00 Mhz	9,00 F
SFE 10,7 Mhz	3,00 F
CFU 455 Khz	12 00 F

REGULATEURS

LM 317 T	7,00 F
LM 337 T	15,00 F
7805 CSP	4,00 F
7808 CSP	4,00 F
7812 CSP	2,50 F
78L05	3,50 F
78L08	3,50 F
/8L12	3,50 F
BOITIERS	

١	BOITIERS
9	D 30 Plastique (170 X 120 X 40): Pu:
9	Pu:20,00 F
	210 PM Plastique :(220 X 140
١	X44) 30,00 F
١	BA 4: 18,00 F
ı	030: idem D 30 9,00 F
١	Promo DTMF: SSI 202 P +
	encodeur 5089: 50,00 F
1	0.00

Offres valables dans la limite des des stocks Tarif valable du 01-11-94 au our vous offrir les prix les plus compétitifs. 30-11-1994

■ 14 Rue ABEL ■ 75012 PARIS TEL:(1) 43 44 55 71 FAX:(1) 43 44 54 88 HORAIRES: Lundi : de 14 H à 19 H 00 de 10 H à 19 H 00 Mardi au samedi inclus : Samedi: de 10 H à 13 H et de 14 H à 19 H 00 METRO : Gare de Lyon

Vanto par correspondance: Port: Les colle valuelles.

PTTen recommandé: 38F si < 2Kg, de 2à5 Kg 50F, >5 Kg 75F Tarif: TEL

Carte Son SOUNDBLASTER

SoundBlaster Pro 2 NG

Carte 16 bits AT 20 voies FM avec processeur

Carte 16 bits AT 20 voies FM avec processeur YAMAHA. Entrée digitalisation 4. 44 Khz stéréo Sortie digit- analog 4. 44 Khz en stéréo . Mixage digital ou analogique. Compression décompression hardware. Interface CD-ROM. Port Joystick, Ampli intégré 2 x 4 W, cables et logiciels de gestion de la carte sous Windows 3.1.

Livrée avec 2 jeux: Lemmings et Indianapolis.

CREATIVE MULTICD

-Sound Blaster Pro 16 ASP-

Enregistrement et lecture du son sur 16 bits hardware. La qualité d' un compact disk audio dans votre PC. Livré avec nombreux logiciels utilitaires et un disque CD Rom.

Promo: 1325,00 F

Promo!

610,00 F

CHIP SERVICE EST L' UN DES LEADERS DE LA DISTRIBUTION DE COMPOSANTS ELECTRONIQUES. "Profitez de nos compétences techniques et de nos conseils pour le choix de votre système informatique."

V

S

CONFIGURATIONS HAUT DE GAMME

CONFIG PENTIUM 90 Mhz

- * Carte mère INTEL Pentium 90 Mhz, 256 Ko cache, 7 slots dont 3 PCI * 8 Mo de RAM * HIL 450 MA, INE ET LITAL SOUR * Carte SVGA Tseng Lab PCI ET 40 W321 accélérée 1 Mo ext à 2 Mo * Clavier mécanique MITSUMI * 2 ports séries accélérés, 1 parallèle. * Moniteur MAG 15" digital à mémoires, * Potities widhen. To digitale 3 with local parallèle.

- * Monteur MAG 13 digital a memories, * Boitier médium Tower avec 2 ventilateurs et alim 230 W, DOS 6.2 Microsoft.
- ouris compatible Microsoft.

15 500,00 F TTC

Cartes mères

AT 80386 DX 40 Mhz 128 Ko cache INTEL livrée avec 256 Ko cache 2 séries, 1// et 1 port IDE: Pu:6750,00 F

Cartes Vidéo

SVGA 16 Bits CIRRUS LOGIC No. 450,00 F SVGA Tseng Lab ET 4032 1Mo RAM 16M couleurs : (1SA)... 590,00 F SVGA TSENG LAB ET 40321 32 bits Vesa 1 Mo ext à 2 Mo,16 Millions de couleurs:830,00 F VRAM Double port2800,00 F

Moniteurs

SVGA couleur 1024 x 768 Pitch 0,28 Tube Hitachi1550,00 F SVGA couleur multisynchro **Fube HITACHI pitch 0,28 rés max** 1024 x 768 non entrelacé ... 1950.00 v GA MAG15" tube Hitachi pitch 0,28 Digital LCD Mem: .. 2780,00 F VGA MAG17 " Multisyncho SONY **Tube TRINITRON pitch 0,25 Full** Digital (Aff LCD) Mem 6350,00 F VGA MAG 17" tube HITACHI pitch 0,26 Digital LCD Memoires Perfs mpressionnantes: 5400,00 F Divers

Clavier 102 T étendu (avec mécanique Mitsumi Japan) :290,00 F Souris compatible PC et MS mouse 3 poussoirs)+ logiciel :150,00 F Souris compatible PC et MS mouse TAPIS SOURIS: 25,00 F

es tarifs peuvent être révisés en fonctiondes cours du varché. Offres valables dans la limite des stocks isponibles. Toutes nos configurations sont garanties 1 au ièces et main d' oeuvre (retour en nos locaux.)

CHIP SERVICE

Vous propose aussi les prix les plus compétitifs de France sur le marché de la réception de télévision par Satellite.

Ensemble Motorisé Haut de Gamme.

- polaire 3 axes et fixation de mat.

- polaire 3 axes et fixation de mat.

 LNB 11 Ghz Facteur de bruit 0,85 db

 LNB 12 Ghz Facteur de bruit 1,0 db

 Relais coaxial 22 Khz pour commander
 les 2 LNBs par le récepteur.

 Vérin 12 " gros modèle avec capteur à
 impulsions pour piloter le déplacement
 de l' antenne.
- impulsions pour piloter le déplacement de l'antenne .
 Positionneur RADIX AP 5000 digital à télécommande (Mém: 99 positions.)
 Guides d'ondes et polarité HV intégrée Récepteur démodulateur Haute qualité
- recepteur demodulateur Haute qualité de fabrication: Modèle RADIX 3700 S (150 canaux stéréo, Tuner 920 à 2050 Mhz à synthèse de fréquences et affichage 4 digits, 3 péritels + sorties diverses, voies son 50 µs, J 17, + Panda Wegener)
- 3 Fiches type F.

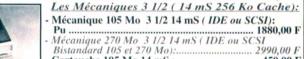
2999.00 F TTC

COPROCESSEURS 80 387 SX 16 Mhz : ... 415,00 F 80 387 SX 20 Mhz : ... 415,00 F 80 387 SX 25 Mhz : ... 415,00 F 80 387 SX 33 Mhz : ... 415,00 F 80 387 DX 20 Mhz : ... 455,00 F 80 387 DX 25 Mhz : .. 455,00 F 80 387 DX 33 Mhz : .. 455,00 F 80 387 DX 40 Mhz : .. 465,00 F

Matériel neuf en emballage d'origine GARANTIE 5 ANS

80 486 DX2 66: 1550 F

- 1 Mo 70 nS: ..(3 pavés).....290,00 F - 1 Mo 70 nS: ..(9 pavés).....390,00 F
- et Pentium.) 1190,00 F Adaptateur SIMM-SIP: 18,00 F


. 18,00 F **SYQUEST**

Les Mécaniques 5 1/4:

Permettent la lecture de cartouches

(Plateaux de disques durs) 19 mS amovibles. (Peut être utilisé à la fois comme un

Cartouche 88 Mo 19 mS: 500,00 F

- Syquest 270 Mo SCSI en coffret externe: 3280,00 F Les accessoires SCSI:

- Coffret externe avec alim 42 W:..... 595,00 F - Cable liaison PC - Coffret SCSI...... 95,00 F

MITSUMI FX 001 D: double LES CD - ROM vitesse 300 ko/s Temps d'accès 320 mS. livré avec carte AT mais peut se connect

L'AFFAIRE DU MOIS!

2 Séries + 1 // + Jeu :..... 140,00 F

votre carte série (htes perfos): . 85,00 F

Boitiers

Le CD ROM SCSI-2 le plus performant du marché des lecteurs double vitesse. Temps d' accès: 200 mS, Taux de transfert 378 Ko/S

à la SoundBlaster 16 ASP: .. 950,00 F

3401

Interne avec 1 caddy

Externe avec alim 30 W + 1 caddy

1990,00 F ttc

2300,00 F ttc

SONY CDII 558. New SCSI 2

2,4 x Speed 1850,00 F

marques citées sont des marques déposées. LECTEURS DISQUETTES Cartes I/O 1 Parallèle : 70,00 F

5 1/4	1,2 Mo :	325,00
3 1/2	1,44 Mo (Mitsumi nu	: 230,00
Berce	1,2 Mo : 1,44 Mo (Mitsumi nu au 5 1/4 pour 3 1/2 :	30,00
		(Prix TTC)

..... 1100,00 F 540 Mo IDE Quantum 14 mS Pu: ..(Garanti 2 ans)...... 1950,00 F 270 Mo Fast SCSI -2 Quantum 11 mS Pu: ..(Garanti 2 ans)......1450,00 F

540 Mo Fast SCSI-2 Quantum 2100,00 F 1.0 Go Fast SCSI-2 Faji 10 ms 20 Mo/S Très haute Technologie

TOSHIBA 3501 B

Le dernier né des CD ROM SCSI-2 **QUADRUPLE Vitesse!**

Performances sans commentaires: Accès: 140 mS Transfert: 660 Ko/S

Interne

Externe

3110,00 F ttc 3450,00 F ttc

Cartes CTRL Controleur IDE 2 FD + 2 HD ...150,00 F Controleuro SCSI 2 ADAPTEC: - AHA 1522: 3 Mo /S (bus) 2 Fd + 7 Hd

Fournie avec drivers NOVELL, Dos, OS 2.

Pu: .(Drivers CD ROM inclus)...... 1180,00 F

ADAPTEC 1542 CFast Kit Selection démarrage et config de la carte par setup.

- AHA 1542CF: 5 Mo /S (bus) 2 Fd +7 Hd Carte haut de gamme avec CPU. Fournie avec drivers Prévu pour NOVELL, Dos, UNIX SCO, SCO XENIX, OS 2

MODEM Chipset Rockwell USA

Carte FAX-Modem haute vitesse + Minitel 14 400 bps Full duplex: modes V42 bis, V21, V22, V22 bis, V32, V32 bis, V42, NMP 4-5, V23. Livré

BBS technique: 43 44 66 52

ESURE & DEVELOPPEMENT

France - Tel: 62.07.29.54 - Fax: 62.07.29.53

Horaires d'ouverture: 9h00-12h30 & 14h00-18h30 Adr; ZI des Poumadères 32600 L'ISLE JOURDAIN

DEVELOPPEMENT FAMILLE 803x/5x

- X Emulateur Professionnel: boîtier externe liaison série
- X Totale transparence: émulation temps réel sans limitation
- X Pts d'arrêt qualif, comptr de passage
- X Traco & dóbog cource C ou PLM
- X Mémoire 64K code + 64K donnée
- X Panel évolutif sondes ROMIess et MONOchip jusqu' à 24 MHz

EMULATEUR TEMPS REEL MULTIFAMILLE

- X Familles: 68HC11,Z80, Z180/182 8031/51 & dérivés -> 42 Mhz), 8085 HD64180/647180, 6809, 68705, etc
- Mémoire: 256K -> 1M, pagination
- X Trace: 32K / 64 bits, conditionnelle
- X Points d'arrêt: Qualifiables & conditionnels, Espace 1MB
- X Environnement: Débog / trace en C, Editeur, Profiler

L' OUTIL IDEAL, L' INVESTISSEMENT PRESERVE

DEVELOPPEMENT FAMILLE 8XC196 KB/C

- X Emulation: Temps réel 16 Mhz, monochip ou étendue
- X Mémoire: 64/128 K 0 Waitstate, Points d'arrêt: 64K X Trace: Temps réel de 32K / 24 bits
- X Test de performance: Temps réel
- X Environnement Intégré: Editeur, Gestion de projet, Make/Build, etc
- X Débogage: Assembl & Source C

PROFESSION: CHALLENGER, AGE: 16 Bits

EMULATEUR TEMPS REEL 80C166

- X Emulation temps réel à 40 Mhz
- X Mémoire d'émulation: 256 Kbytes
- X Points d'arrêt: 128K hard. Comptr de passages, Conditions complexes
- X Trace: 8K x 144bits, 12 voies ext

X Analyse de performance: Temps réel par timer dédié

DEVELOPPEMENT FAMILLE 68HC11

- X Pods: Ax,Ex,Dx,F1,Kx,L6,711E9,811E2
- X 64k mémoire, Emulation temps réel
- X 64k pts d'arrêt tps réel qualifiables
- X Liaison RS-232C: 115,2 Kbauds
- X Assembleur / Désassembleur ligne
- X SPU: Simulation périphériques X Débog symbolique

INCROYABLEMENT EFFICACE

7200 FHT

PROGRAMMATION DE COMPOSANTS

PROGRAMMATEUR UNIVERSEL 5750 FH E/Eprom, Flash, Epld, Pal, Gal, Peel, Microcont, Test CI Carte intfce, 42 pins program. Excellent rapport Qualité /Prix

MULTIPROGRAMMATEUR

8 FPROMS 2716 -> 1Mbite(Exicto aucci on 8 Mbito) PROGRAMMATEUR EPROM / EEPROM 1890 FHT 2716 -> 27040 (4Mbits), 2804 -> 28256

SCOPE NUMERIQUE / PC

- X 10/20/40/100/200 Mhz,1/2/4 voies X Buffeur: 4 à 128K
- X 8 voies logiques
- X Pré/ Post trigger
- X Logiciel de FFT
- X Imp: 1 Mo / 30pf

4690 FHT

ANALYSE LOGIQUE / PC

X Fréq: 80/100/200 Mhz. 24/32 voies X Mémoire: 4/16kb

X Seuils: + - 9v

X 1->15 ség de Trig

X Pré, Post Trigger

X Timing, Liste états

A PARTIR DE

8500 FHT

PROGRAMMATEUR SERIE

Y EPROM. EEPROM: 2Kb > 4 Mb

X Microcontrôleurs: 875X, 87C552, 87C75X, MP272X, Z86EXX, PIC16

68HC705C9, 68HC711XX

X GAL: LATTICE, NS. SGS. VTI

X EMULATION D'EPROM: 8/16 bits UNIVERSEL & RS 202 8700 FIIT

DEVELOPPEMENT LOGICIEL

- CROSS COMPILATEURS C/Pascal
- Simulateurs Débogueurs Source C
- Environnements dévelopmt intégré
- Macro-Assembleurs relogeables
- Editeurs de liens étendus (-> 1Mo) Noyaux temps réel professionnels

Plateformes: DOS, VAX, UNIX, etc

CARTE UP INDUSTRIELLE

X 8031/32, 80196, 68HC16, 80C166

68332, 68HC11 80535/37/52. etc

X Ports RS232/485

X Ports analogique X Ports parallèle

A PARTIR DE 2450 FHT

ACQUISITION SUR PC

- I/O Analog 12/14/16bits ->100Khz
- I/O Digital Opto/Relais 24->144bits Watchdog: Timoout 1mo > 1h50
- Timers 16bits, Cde Moteurs p à p
- Chassis industriel, Carte écran LCD Carte processeur 286/386/486DX2

NOMBREUSES AUTRES CARTES

EMULATEUR ROM/RAM 2Mb

- X ROM: 2764->272048(ext: 274096)
- X RAM: 64K à 2Mb
- X Adaptateur 16 bits
- X Désassemblage
- X Utilitaires gestion
- X Extension à 4 Mb
 - 3500 FHT VALEUR SURE

CARTE EVALUATION

68000/8MHz, ->64K RAM, ->128K ROM

Nbx périphériques, Moniteur, PC/RS232 FAMILLE 803X/5X... 3450 FHT

Ucont:000X/5X/05X/05X/50X/502/451 75X/410/528, PC/RS232, Zone pastillée Débog: Symbolique & source C/PLM

HORLOGE RADIOSYNCH

- X Radiosynchronisée France Inter
- X Vitesse: Synchro faite en 3' max
- X Données: Heure Minuto/Socondo Jour/mois/Année

TOP SYNCHRO

3850 FH7

MONTPARNASSE

rue d'Odessa Tél: 43 21 56 94 rue Delambre Tél: 43 22 05 93 Fax: 43 21 97 75 14 PARIS

MINITEL AU 43 20 20 20

MONTPARNASSE

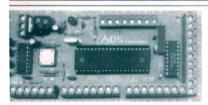
Métro Montparnasse Edgar Quinet ou Vavin

TOLBIAC

S Electronique

TOLBIAC

44, rue Baudricourt 75013 PARIS Tél.: 45 82 82 78 Fax: 45 86 50 85


MINITEL AU 43 20 20 20

Ouvert au marat au samedi de 10 h à 13 h et de 14 h à 19 h Service expédition rapide COLISSIMO Règlement à la commande : forfait de port 35 F. Contre-remboursement COLISSIMO : Forfait 65 F sans préavis. Les produits actifs ne sont ni repris ni échangés . Administrations et sociétés acceptées, veuillez vous renseigner pour les moda

CIRCUITS LINEAIRES **CMOS SERIE 4000** MICRO ET PERIPHERIOUES

TRANSISTORS Thyristors Triacs Diodes COMPOSANTS MINIATURE DE SURFACE OPTO ET RELAIS LES KITS ET MODULES KEMO - Kits DIAMANT - OK Kits: Kitplus - Kitchoc - Pratikit

Kits Velleman - Kits Sales - Modules Cebek

10 entrées analogiques

- 3 ports 8 bits entrée/sortie
- 3 commandes de moteurs pas à pas
- 4 circuits pour mesure relative R/C
- 1 commande PWM pour moteur continu
- 2 interruptions IRQH et IRQL
- directement connectable a un circuit MODEM type EF 7910 pour le commander par téléphone

CEPTIONNEL CARTE ADS 232 EN KIT

ette carte branchée sur une liaison série et avec n'importe quel logiciel de communication série permet à votre ordinateur de communiquer avec l'extérieur et cela sans savoir programmer.

CK ELECTRONIQUE

cette carte vous pouvez transformer votre ordinateur en appareil de mesure et de commande universel, multimètre, ohmètre,

vré avec schéma, disquette de démo logiciel de communication sous DOS

EXCLUSIF 1390 F REVENDEURS NOUS CONSULTER

PROMOTION

LECTEUR DE DISQUETTE 3.5 POUCES SIMPLE FACE

L'UNITE 80 F

LES 10 PIECES

650 F

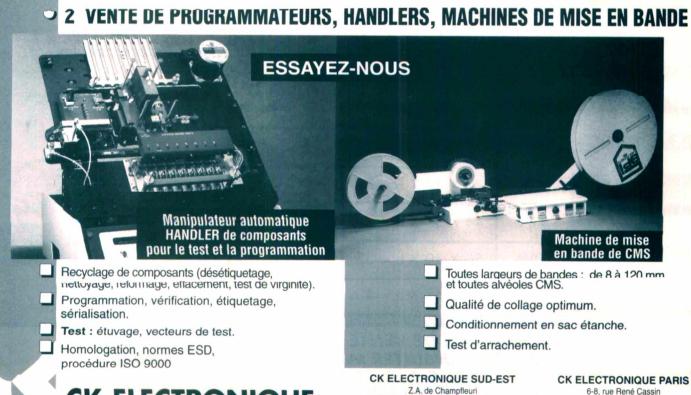
DISPONIBLE **KIT CH 102**

MINITEL AU 43 20 20

LECTEUR/COPIEUR DE 68705 P3 AUTONOME

permet de RELIRE le programme d'un 68705 P3 et de programmer un 68705 P3 vierge. La sauvegarde du programme est possible grâce à sa liaison RS 232. PRESSEZ-VOUS. livré avec disquette

490 F


91300 MASSY

Tél. (1) 60 13 09 65 - Fax (1) 60 13 36 68

OUVEAU !!! MINITEL A ACCES GRATUIT AU 43 20 20 20 A LA TARIFICATION TELEPHONIQUE NORMALE

1 NOUS PROGRAMMONS ET METTONS EN BANDE VOS COMPOSANTS

VENTE DE PROGRAMMATEURS, HANDLERS, MACHINES DE MISE EN BANDE

31, Bd Pré-Pommier - 38300 BOURGOIN-JALLIEU

Tél. 74 43 80 45 - Fax 74 28 69 11

Transformateurs Auto transformateurs Monophasés, Triphasés Self, Bobinage à la demande...

OFFRE UNIQUE

Valable jusqu'au 15 Décembre (Dans la limite des stocks disponible)

Prim	TRANSFORMATEUR STANDARD NU Prim: 220V Sec: 2x6v/2x9v/2x12v/2x15v/2x18v/2x24v									
PUISSANCE	CIRCUIT	EMPILAGE	HAUTEUR	TYPE DE SORTIE	FIXATION	PU H.T.				
3VA	32 X 38	13,7	29	PICOTS POUR CI	NU	11,50				
5VA	35 X 42	14,8	30,3	PICOTS POUR CI	77	12,60				
10VA	40 X 48	20,5	38,5	PICOTS POUR CI	ETRIER	15,40				
16VA	50 X 60	20,8	42,3	PICOTS POUR CI	ETRIER	17,80				
26VA	50 X 60	25,5	47	PICOTS POUR CI	ETRIER	21,40				

Prim : 2	TRANSFORMATEUR STANDARD MOULÉ Prim: 220V Sec: 2x6v/2x9v/2x12v/2x15v/2x18v/2x24v									
PUISSANCE	DIMENSIONS	FIXATION	PU H.T.							
1VA	27 X 32 X h = 21	/	10,30							
3VA	40 X 34 X h = 31	/	13,90							
5VA	44 X 37 X h = 32	2 trous entraxe =35 mm	16,10							
10VA	50 X 42 X h = 38	2 trous entraxe =40 mm	20,20							
15VA	56 X 47 X h = 40	2 trous entraxe =45 mm	22,60							

CONDITION DE VENTE ET FABRICATION SPÉCIALE: NOUS CONSULTER (demander M. Thierry MARNAS)

C. E. P, ZA le Razas, BP 13 26780 MALATAVERNE - FRANCE

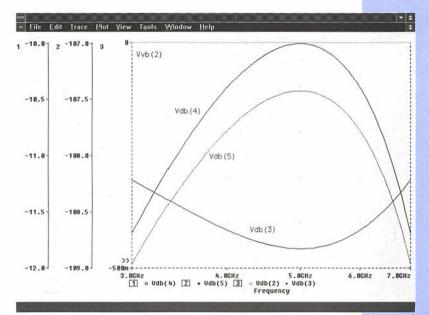
Tél: 75 90 86 72 Fax: 75 90 86 48

SIMULATION SPICE **DES COUPLAGES** MAGNÉTIQUES

Les couplages magnétiques jouent un

rôle très important en électronique,

qu'ils soient à noyau de fer


(transformateurs d'alimentation,

de ligne, ...), sans fer (circuits couplés

accordés, ...) ou par leurs effets

parasites (couplages entre pistes d'un

circuit imprimé, ...). Souvent complexes

à calculer, la primitive Kxx de PSPICE permet de reproduire leur comportement

avec une très bonne approximation.

Quelques rappels

Soient deux bobines suffisamment proches l'une de l'autre, d'inductances propres L1, L2 et comportant respectivement n1, n2 spires (figure 1). Si le primaire est parcouru par un courant alternatif I1, une partie du flux magnétique produit par L1 traverse L2 en quantité plus ou moins grande suivant la distance et la forme géométrique des bobines.

La définition des coefficients d'auto-induction et d'induction mutuelle permet d'écrire :

L1.l1 = n1. ϕ 1, M.l1 = n2. ϕ 12, et il est logique d'appeler flux de fuite par spire la différence $\varphi f1 = \varphi 1 - \varphi 12$.

Soit If1 l'inductance de fuite de la bobine primaire, on a:

 $n1.\phi f1 = If1.I1 = n1.\phi1 - n1.\phi12$, et

donc If1 = L1 - M.n1/n2. On définit de la même façon, en ali-

mentant le secondaire, une inductance de fuite de la bobine secondaire : If2 = L2 - M.n2/n1.

Finalement, en éliminant n1/n2, on obtient la relation fondamentale :

 $(L1 - If1).(L2 - If2) = M^2$

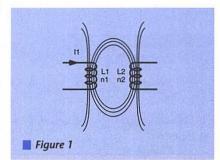
Un couplage parfait étant caractérisé par la relation:

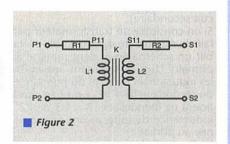
 $M = \sqrt{L1.L2}$

on appelle cœfficient de couplage le rapport:

 $K = M / \sqrt{L1.L2}$

Primitive de couplage Kxx


La primitive Kxx de PSPICE permet de coupler des bobines, avec ou sans noyau de fer, et des lignes de transmission Txx:


L1 L2 ... Ln <coeff, de couplage K> [<modèle de circuit magnétique>]

Kxx T1 T2 ... Tn Lm Cm

Lm =<inductance de couplage> Cm=<capacité de couplage>

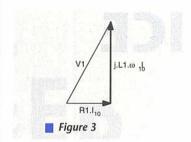
Il faut noter qu'en l'absence de modèle de circuit magnétique, les valeurs de L1 L2 ... Ln représentent l'inductance propre de chaque bobine, alors qu'en présence d'un modèle de circuit magnétique, elles représentent le nombre de spires des enroulements.

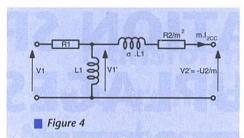
Modèle linéaire de transformateur à noyau de fer

La première syntaxe de la primitive Kxx permet de rendre compte très simplement du fonctionnement d'un transformateur dans la partie linéaire de sa caractéristique. Elle peut être complétée par la spécification des résistances primaire et secondaire :

SUBCKT <nom transformateur> P1 P2 S1 S2

R1 P1 P11 <résistance primaire>


L1 P11 P2 <inductance primaire>


Kxx L1 L2 <coeff. de couplage K> L2 S2 S11 <inductance secondaire>

R2 S11 S1 <résistance secondaire>

Ce sous-circuit représente un transformateur comportant un enroulement primaire et un enroulement secondaire. Il lui correspond le schéma équivalent de la figure 2.

• Détermination des valeurs des éléments du circuit équivalent :

Pour déterminer les valeurs des éléments du circuit équivalent, il suffit de mesurer en courant continu les résistances R1, R2 des enroulements, puis de faire en alternatif un essai à vide, ce qui donne m = n2/n1 et L1, puis un essai en court-circuit d'où l'on déduit K et L2.

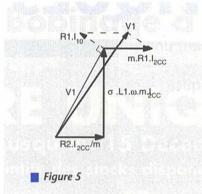
Essai à vide :

il permet de mesurer V1 (tension primaire), U₂₀ (tension secondaire), I₁₀ (courant primaire).

Le schéma équivalent montre qu'à vide la tension mesurée au primaire est la somme vectorielle des tensions R1. I_{10} et j.L1. ω . I_{10} (I_{10} : courant magnétisant) (**figure 3**):

d'où L1 =
$$\frac{\sqrt{V_1^2 - (R1.I_{10})^2}}{2.\pi.f.I_{10}}$$

et m = n2 / n1 =
$$\frac{U_{20}}{\sqrt{U_1^2 - (R1.I_{10})^2}}$$


Essai en court-circuit:

il permet de mesurer V1 (tension primaire) et I_{2CC} (courant de court-circuit secondaire).

Si on considère un transformateur parfait de rapport m, il est possible d'établir un schéma équivalent ramené au primaire (figure 4) faisant apparaître les inductances de fuite du primaire et du secondaire lf1 + lf2' = σ . \dot{L} 1 (σ : coefficient de Blondel avec $K = \sqrt{1-\sigma}$; If2': inductance de fuite secondaire ramenée au primaire):

La figure 5 donne le diagramme vectoriel en court-circuit (V'2=0).

• Evaluation des modéles linéaires de transformateurs :

En court-circuit, la tension V'1 est la somme vectorielle des chutes de tension dans R2/m² et σ.L1. Au primaire, le courant dans R1 est la somme du courant magnétisant, déphasé de π/2 par rapport à V'1, et du courant

Détermination de K et L2 On a:

 $V'_1 = (R2/m^2 + j.\sigma.L1.\omega).m.l_{2CC}$ $I_{10} = V'_{1}/j.L1.\omega$

 $V_1 = V'_1 + R1.(I_{10} + m.I_{2CC})$

 $= [R2/m^2 + j.\sigma.L1.\omega]$

+ R1/j.L1. ω . (R2/m² + j. σ .L1. ω)

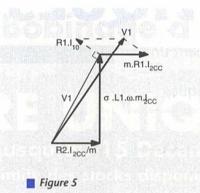
+ R1].m.l2CC

 $= [R2/m^2 + j.\sigma.L1.\omega]$

+ R1.R2/m². j.L1.ω

 $+ R1.\sigma + R1].m.l_{2CC}$

 $= [R2/m^2 + R1 + R1.\sigma]$


+ j.(σ .L1. ω

- R1.R2/m²).L1.ω].m.I_{2CC}

d'où $[R2/m^2 + R1 + R1.\sigma]^2$ + $[\sigma.L1.\omega - R1.R2/m^2.L1.\omega]^2$

 $= [V_1/m.l_{2CC}]^2$

 Evaluation du modèle de transformateur CECLA M30.94.009 .SUBCKT CECLA_M30.94.009 P1 P2 S1 S2; modele des transformateurs X1 et X2 R1 P1 P11 98.5 L1 P11 P2 7.7821H K1 L1 L2 0.9744 L2 S2 S22 17.1mH R2 S22 S1 0.162 .ENDS .TRAN 1us 2000ms 1.98 200us .PROBE V1 1 0 sin(0 325.27 50) * Essai a vide (U2o, 11o) X1 1 0 2 0 CECLA_M30.94.009 RL 2 0 1G * Essai en court-circuit (12cc) X2 1 0 0 0 CECLA_M30.94.009 Figure 6a

En posant : $A = R2/m^2 + R1$, $B = R1.R2/m^2.L1.\omega$, C = V1/m.12CC

on obtient: $\sigma^2 \cdot [R1^2 + (L1.\omega)^2] + 2.R1^2 \cdot \sigma$ $+ A^2 + B^2 - C^2 = 0$ $D = R1^4 - (R1^2 + (L1.\omega)^2).(A^2 + B^2 - C^2)$

et $\sigma = \frac{-R1^2 + \sqrt{D}}{R1^2 + (L1.\omega)^2}$

 $K = \sqrt{1 - \sigma}$

 $L2 = L1 \cdot \left(\frac{m}{\kappa}\right)^2$

· Exemples de modèles de transformateurs CECLA/DELTOUR:

Connaissant V₁, I₁₀, U₂₀, I_{2CC}, R1 et R2, les calculs précédents peuvent être facilement effectués à l'aide d'un tableur, ou, à défaut, d'une calculatrice...

Les données suivantes (tableau 1) ont été fournies, en dégageant toute responsabilité, par la société CECLA/DEL-TOUR, pour un certain nombre de modèles représentatifs de sa gamme. Nous ne pouvons que nous réjouir d'une telle initiative...

Ces résultats montrent d'une part, la forte valeur des inductances primaires des transformateurs à noyau de fer et, d'autre part, un couplage d'autant plus serré que la puissance du transformateur est importante.

Essais à vide et en court-circuit (figures 6a et 6b)

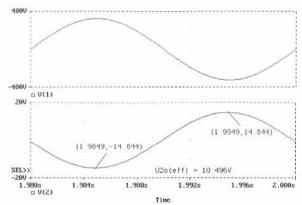
Ces simulations confirment la validité du modèle dans le cas d'un fonctionnement linéaire, l'erreur maximale restant inférieure à 2% (essai en courtcircuit).

Il faut noter par ailleurs le repérage des connexions de l'inductance L2, repérage qui permet d'obtenir une tension secondaire en opposition de phase avec la tension primaire. I(X1.R1) et I(X2.R2) représentent respectivement les courants mesurés dans les résistances primaire et secondaire des transformateurs X1 et X2.

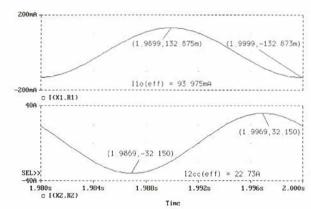
Exemple d'application

A titre d'application, il est possible d'évaluer le comportement d'un transformateur CECLA M30.94.009 utilisé dans une structure classique d'alimentation linéaire régulée par 7805 (figure 7).

A noter que le modèle de base du transformateur a été complété d'une résistance d'isolement RT de 7 megohms (classe E) afin de maintenir une continuité électrique entre primaire et secondaire.

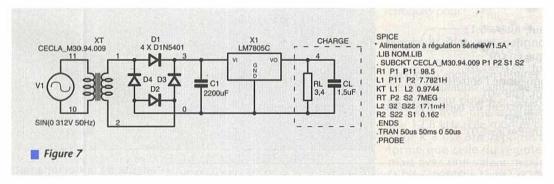

Résultat de simulation (figure 8) :

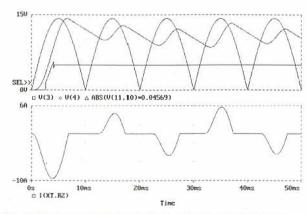
Cette simulation est conforme aux résultats expérimentaux obtenus avec ce type d'alimentation. En particulier, elle confirme la forte pointe de courant secondaire (tension primaire nulle pour un flux nul) et une légère surtension en sortie du regulateur (dépassement de la réponse indicielle) à la mise sous



Référence	M1.94.012	M5.94.024	M30.94.009	EYP6.91.212	EYP24.91.209	CE92.250.024
	1VA 220/12 V Moulé	5VA 220/14 V Moulé	30VA 220/9 V Moulé	6VA 220/ 2 x 12 V Moulé	24VA 220/2 x 9 V Moulé	250VA 220/24 V Industriel
f (Hz)	50	50	50	50	50	50
V1 (V)	230	230	230	230	230	230
11o (A)	0,015	0,031	0,094	0,025	0,029	0,209
U2o (V)	19,6	35.7	10.5	38,3	23,8	25,35
12cc (A)	0,2	0.7	23,14	0,67	5,1	215
R1 (ohms)	4015	955	98.5	780	141	3,95
R2 (ohms)	45	24	0,162	21,35	1,83	0,05
L1 (H)	47,1046	23,4201	7,7821	29,1791	25,2413	3,5029
m	0,0883	0,1565	0,0457	0,1671	0,1035	0,1102
K	0,8472	0,9273	0,9744	0,9274	0,9811	0,9976
L2 (H)	0,5117	0,6672	0,0171	0,9477	0,2809	0,0428

Tableau 1




Exit Md trace Remove_trace X_oxis Y_oxis Plot_control Display_control Macros Hard_copy Cursor Zoom Label conFig_colors Goal_functions

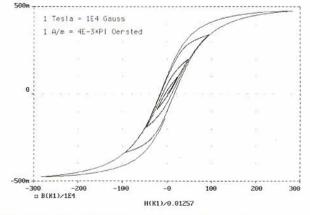

Exit Add trace Remove_trace X_axis Y_axis Plot_control Display_control Macros Hard_copy Cursor Zoom Label conFig_colors Goal_functions

Figure 6b

Exit Md-trace Remove_trace X_axis Y_axis Plot_control Display_control Macros Hard_copy Cursor Zoom Label conFig_colors Goal_functions

Restore Save List_displays View_display_detail One_delete All_delete

Modèle non-linéaire de transformateur à noyau de fer

Le modèle précédent ne permet pas de simuler le phénomène de saturation du circuit magnétique et l'annulation des effets d'induction qui en découle. PSPICE supportant une primitive de modélisation des circuits magnétiques (primitive CORE), il est possible de rendre compte du fonctionnement non-linéaire d'un transformateur en spécifiant un tel modèle pour la primitive Kxx.

· Modèle de circuit magnétique

Ce modèle, établi par JILES-ATHER-TON, est basé sur l'équation de la courbe de première aimantation d'un matériau ferromagnétique. Il permet de traduire en particulier le phénomène de saturation qui apparaît lorsque tous les domaines de WEISS ont pris la direction du champ H.

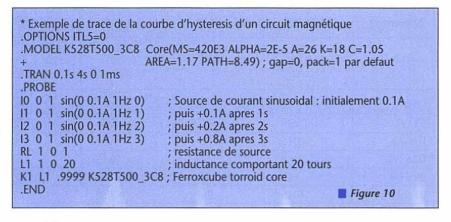
Cette équation est complétée par une équation analogue à celle d'un frottement mécanique et caractérisant l'ouverture de la courbe d'hystérésis. Elle est par ailleurs complétée d'équations permettant de rendre compte des phénomènes de traînage magnétique et de courbure des domaines de WEISS au niveau des parois.

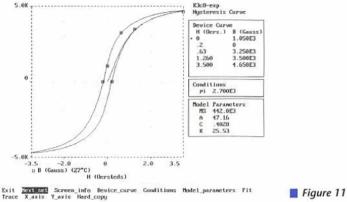
La détermination des paramètres de ce modèle étant plutôt complexe, PSPICE dispose d'un outil (PARTS.EXE) permettant de calculer leur valeur à partir de la courbe d'aimantation B = f(H)d'un matériau (figure 9).

En sortie de PARTS, ces valeurs sont stockées dans un fichier d'extension .MOD qu'il est nécessaire de compléter par les données géométriques du circuit magnétique :

AREA: section du circuit magnétique en cm²

(par défaut, AREA=0.1)


PATH: longueur moyenne du circuit magnétique en cm (par défaut, PATH=1.0)


GAP : longueur de l'entrefer en cm (par défaut, GAP=0)

PACK : coefficient de foisonnement (circuit feuilleté)

(par défaut, PACK=1.0)

Exemple:

* Evaluation transformateur modele non lineaire LEVEL=1 .OPTIONS ITL5=0 .LIB .MODEL KEC35-3C8 AKO:K3C8 CORE(LEVEL=1 AREA=.843 PATH=7.74 GAP=.017) .TRAN 1us 600us .PROBE V1 1 0 PWL(0,0 600us,24V) R1 1 2 .5 * modele non-lineaire L1 2 0 45 L2 3 0 4 K1 L1 L2 0.99 KEC35-3C8 R2 3 0 1k * modele lineaire Rth 1 th .5 Lth1 th 0 1mH Lth2 th2 0 8uH Kth2 Lth1 Lth2 .99 Rth2 th2 0 1k Figure 12a .END

.model K3C8 CORE(Level=2 Alpha=0 Ms=415.2K A=44.82 C=.4112 K=25.74) .model KRM10PL_3C8 ako:K3C8 CORE(Area=.970 Path=4.61)

Remarque:

Lors de l'affectation d'un modèle de circuit magnétique à un élément de type Kxx, les valeurs des bobines associées représentent leurs nombres de spires.

L1 1 2 40

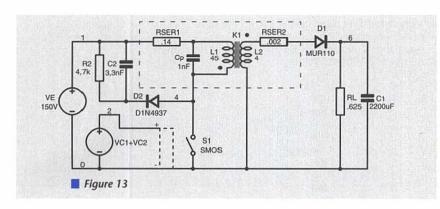
K1 L1 0.99 KRM10PL_3C8

 Visualisation d'un cycle d'hystérésis L'outil de visualisation graphique de résultats de simulation PROBE disposant d'opérateurs B(Kxx) et H(Kxx) permettant de visualiser la trace du champ et de l'induction d'un circuit magnétique, il est possible d'afficher le cycle d'hystérésis d'un matériau soumis à un champ périodique croissant (figures 10 et 11):

Lorsque le champ H décroît à partir de la valeur Hmax, l'induction, pour une même valeur de H, a une valeur plus élevée qu'au cours de la croissance de l'excitation. Au bout d'un certain nombre d'opérations, les courbes coïncident et réalisent un cycle d'hystérésis.

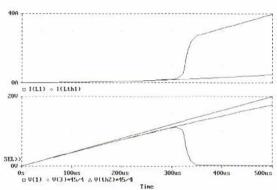
 Comportement d'un transformateur en saturation (figures 12a et b) Cette simulation met bien en évidence le fait que, lorsque le flux d'induction atteint la valeur de saturation du circuit magnétique, il y a annulation des effets d'induction dans le secondaire.

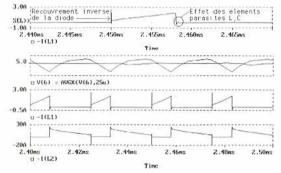
Exemple d'application - Convertisseur


Flyback 5V/8A (figure 13). La simulation de ce convertisseur il vient :

adapté de la documentation MOTO-ROLA du circuit UC3842B/D doit permettre de vérifier que le noyau magnétique ne se sature pas (noyau saturé lorsque la forme des courants dans les enroulements n'est plus trapézoïdale) et d'une manière plus générale, le bon fonctionnement du circuit. Le transistor de commutation MTP4N50 a été remplacé par un interrupteur commandé en tension S1, et la commande par une source de tension pulsée. Cahier des charges :

VE = 150V, VS = 5V, IS = 8A


Eléments de conception : en se fixant une fréquence de découpage fd de 40kHz, un rapport cyclique α maximum de 0,45, un rendement η minimum de 0,7 et compte tenu des caractéristiques du noyau EC35-3C8 (area= 84,3mm², path = 77,4mm, μ r = 2000),

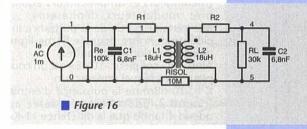

Circuits couplés accordés

En radiofréquences, il est souvent nécessaire de faire passer de l'énergie d'un circuit à un autre sur une bande de fréquence spécifiée. Le couplage magnétique de deux circuits oscillants accordés permet de réaliser un filtre passe-bande tout en assurant l'isolement galvanique des deux circuits (figure 16). La sélectivité du filtre est déterminée par la valeur du coefficient de couplage K.

Restore Save List_displays View_display_detail One_delete

Figure 12b

EXIT Restore Save Lixt_displays View_display_detail One_delete All_delete


Figure 15

L1 =
$$\frac{VE^2 \times \alpha_{max}^2 \times \eta}{2 \times fd \times VS \times IS} = 997 \,\mu\text{H}$$

gap = $\frac{\text{area} \times \text{n1}^2 \times \mu_0}{\text{L1}} - \frac{\text{path}}{\mu_r} = 0,176$
 $\alpha = \frac{(VS + VD1) \cdot \text{n1}}{VE \cdot \text{n2} + (VS + VD1) \cdot \text{n1}} = 0,31$
 $\tan = \frac{\alpha}{\text{fd}} = 7,75 \,\mu\text{s}$

Fichier circuit : après quelques essais ayant permis d'ajuster le rapport cy-

clique et la valeur de l'entrefer (saturation pour gap = 0,18 mm), et en limitant la précision de PSPICE (RELTOL = .01, ABSTOL = 1E-4) compte tenu de la valeur des courants, on obtient le fichier circuit de la figure 14 et les résultats de la figure 15:

Cette simulation montre que, compte tenu des choix effectués, le noyau magnétique ne sature pas (saturation pour ton = 8,5 µs). Elle montre par ailleurs les surintensités dues au phénomène de recouvrement inverse de la diode D1 apparaissant au secondaire et au primaire du transformateur, ainsi que l'effet de l'inductance de fuite et des capacités parasites (surtension oscillatoire amortie aux bornes du primaire).

Le couplage est optimum (couplage critique) pour

$$K = \frac{\sqrt{L1 \times L2}}{\omega} = 0.0194$$

Exemple d'application (figures 17 et 18): Cette simulation confirme un couplage optimum pour K = 0,02 centré sur 455 kHz avec une largeur de bande B = 12,8 kHz. Elle montre par ailleurs pour K = 0,1 une réponse de même forme que celle du régime critique, mais avec une valeur maximale plus faible (couplage lâche) et, à l'inverse, pour K = 0,03 une réponse qui présente deux valeurs maximales sensiblement égales à celle du régime critique, et une valeur minimale centrée sur 455 kHz (couplage serré).

Lignes de transmission couplées

Lorsque deux lignes sont placées à proximité, elles présentent un certain couplage et l'énergie peut passer de l'une à l'autre (figure 19).

Les valeurs de la mutuelle Lm et de la capacité de couplage Cm dépendent de la longueur des parties des lignes en regard et de leur espacement. Si cette longueur est égale à un quart d'onde,

l'ensemble constitue un filtre passebande centré sur la fréquence correspondante.

Depuis la version 5.40, PSPICE permet de simuler un tel couplage par une ex-

tension de la primitive Kxx:

Kxx T1 T2 lm=<mutuelle linéique> Cm=<capacité linéique de couplage> T1, T2 représentent deux lignes de transmission avec pertes de caractéristiques R, L, C, G et de longueur LEN. Lm et Cm peuvent être interprétés comme les termes de la diagonale secondaire des matrices de couplage capacitif [C] et inductif [L]:

$$[C] = \begin{bmatrix} C_{11} & Cm \\ Cm & C_{22} \end{bmatrix}$$

$$[L] = \begin{bmatrix} L_{11} & Lm & - \\ Lm & L_{22} \end{bmatrix}$$

Bien que le modèle de couplage utilisé par PSPICE ne soit théoriquement exact que pour des lignes, avec ou sans pertes, homogènes et également espacées, il donne néanmoins encore de bons résultats pour des lignes quelconques à faibles pertes. Exemple d'application

- Coupleur directif 5GHz, -10 dB:

Dans un certain nombre d'applications (mélangeurs et amplificateurs équilibrés, modulateurs, déphaseurs, ...) une certaine partie de la puissance incidente doit être couplée d'une ligne de transmission à une autre.

Ainsi, un «coupleur -10 dB» est un coupleur dans lequel une fraction

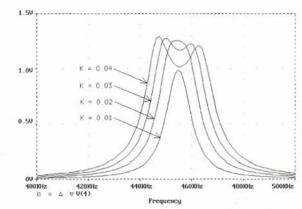
(noeud 2, 0dBm) est transférée au noeud 4 tandis que la différence «1-K» = -0,458 dBm est transférée au noeud 3 et que le noeud 5 est totalement découplé du noeud 2 (figure 20).

Simulation fonctionnelle:

Lors de l'étude des lignes couplées, on démontre qu'il existe deux modes de propagation, appelés mode commun et mode différentiel (pair et impair en américain), et que leur comportement peut être représenté par le schéma équivalent de la figure 21 avec :

$$Zc = Zo \cdot \int \frac{1 + 10^{K/20}}{1 - 10^{K/20}} = \int \frac{L + Lm}{C}$$

$$Zd = Zo \cdot \sqrt{\frac{1 - 10^{K/20}}{1 + 10^{K/20}}} = \sqrt{\frac{L - Lm}{C + 2.Cm}}$$


Compte tenu d'un coefficient K= -10 dBm, on obtient Zc = 69,37 Ω et Zd = 36,038 Ω , d'où le fichier circuit de la figure 22 et les résultats de la figure 23

Simulation structurelle:

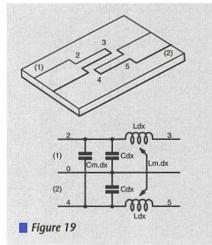
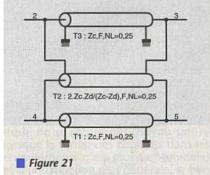
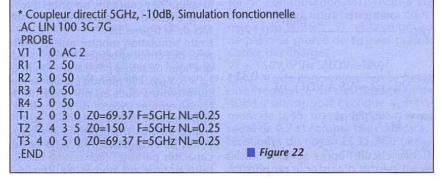
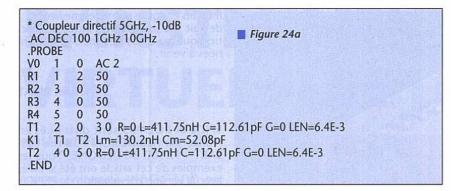
A l'aide des méthodes développées dans l'ouvrage de T.C. EDWARDS -Conception des circuits micro-ondes -MASSON 1984, on obtient pour le couplage des lignes microbandes des rapports w/h = 0,85, s/h = 0,25

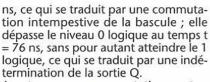
(w : largeur de bande, h : épaisseur du substrat, s : espace inter-bandes) et

* Simulation d'un couplage par circuits accordes .param Couplage=.02 .step param Couplage .01 .04 .01; debut, fin, increment AC LIN 100 400kHz 500kHz .PROBE AC 1m 100k C1 0 6.8nF R1 L1 18_uH L2 K12 L1 {Couplage} L2 18uH R2 C2 6.8nF 30k 5 0 10MEG RISOLEMENT Figure 17 END

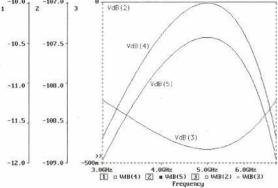
Exit Md_trace Remove_trace X_axis Y_axis Plot_control Display_control Macros Hard_copy Cursor Zoom Label conFig_colors Goal_functions

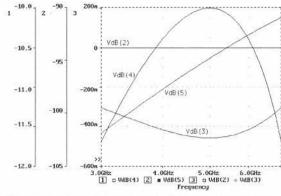
Figure 18


Figure 20

une longueur de 6,4 mm. A partir de ces données et des caractéristiques du substrat ($\epsilon r = 9$; h = 1 mm), il est possible de déterminer les caractéristiques $Zo = 60,47~\Omega$ et C = 112,61~pF/m des lignes pour un couplage «à vide» et, en définitive, les caractéristiques électriques du couplage : L = 411,75~nH/m;





A noter que ces commutations se traduisent par des messages d'avertissement de PSPICE compte tenu de largeurs d'impulsions inférieures au minimum requis pour la technologie AS: la bascule X3A pourra commuter ou non dans la réalité sur un glitch de cette amplitude.

Exit Md trace Remove_trace X_axis Y_axis Plot_control Display_control Macros Hard_copy Cursor Zoom Label conFig_colors Goal_functions

Exit Matrice Remove_trace X_axis Y_axis Plot_control Display_control Macros Hard_copy Cursor Zoon Label conFig_colors Goal_functions

Figure 23

C = 112,61 pF/m; Lm = 130,2 nH/m; Cm = 52,08 pF/m (pour cette simulation, les lignes sont supposées sans

pertes: R = G = 0). Cette simulation (figures 24a et b) confirme à la fois les caractéristiques dimensionnelles des lignes microbandes et la validité des équations ayant permis de déterminer leurs caractéristiques électriques. A noter que ces calculs prennent en compte les effets de bord et de dispersion.

piste L1 se traduit par l'apparition d'impulsions parasites. Il est toutefois probable que ces impulsions seront absorbées par la porte de sortie compte tenu de leur faible durée (≈ 1,8 ns)

Figure 24b

et de leur faible niveau (≈ 1,6 V). Couplage de pistes en technologie microstrip:

Lors de la conception de cartes comportant des circuits rapides (technologies AS, ECL, ...), il est d'usage de réa-liser des plans de masse et d'alimentation afin de diminuer la résistance et l'inductance des lignes d'alimentation, et d'augmenter leur capacité. De ce fait, toutes les pistes dont le retard de propagation est supérieur à quatre fois le temps de montée/descente des circuits (longueur LEN ≥ 8E7.tr) doivent être considérées comme des lignes de transmission (microstrip ou stripline). Ces pistes sont susceptibles de réflexions, d'oscillations et/ou de diaphonies.

Le calcul des caractéristiques électriques d'un PCB étant un exercice particulièrement difficile, il est vivement conseillé d'utiliser un logiciel d'analyse d'intégrité du signal tel que POLARIS® de la société MICROSIM. Associé à un simulateur tel que PSPICE, il devient ainsi possible de détecter d'éventuels glitches liés aux réflexions et diapho-

conclusion

.LIB NOM.LIB

VCC 1 0 5V

Ons 11

50ns 01

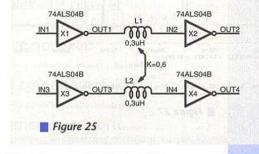
+ 120ns 11

.PROBE

TRAN 10ns 200ns

X1 IN1 OUT1 74ALS04B

X3 IN3 OUT3 74ALS04B


L1 OUT1 IN2 .3uH X2 IN2 OUT2 74ALS04B

L2 OUT3 IN4 .3uH X4 IN4 OUT4 74ALS04B

K12 L1 L2 0.6

.END

La simulation des couplages magnétiques à l'aide de PSPICE ou d'équivalents SPICE, si elle ne dispense pas de la réalisation d'un prototype, permet de prédéterminer avec une bonne approximation le comportement des circuits. Cette simulation peut même s'avérer indispensable lorsque le couplage participe de manière critique au

Evaluation CEM, susceptibilite de deux pistes

U1 STIM(2,11) \$D_DPWR \$D_DGND IN1 IN3 IO_STM

Figure 26

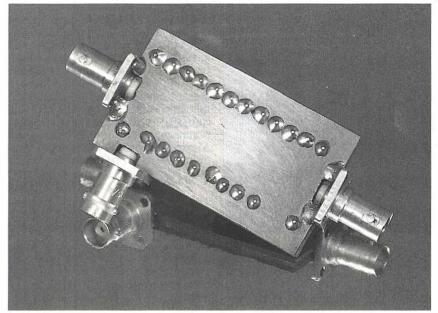
Couplages parasites et CEM

Comme l'a montré D. PARET dans le n° 547 d'ERP («CEM et PCB»), le routage des pistes sur un circuit imprimé affecte d'une manière importante les performances CEM d'une carte. En effet, de simples conducteurs présentent une inductance de l'ordre de 1µH/m et leur proximité peut se traduire par des couplages magnétiques non négli-

Type de ligne	Couplage		
fils parallèles	0,5-0,7		
PCB 2 couches	0,6-0,9		
PCB multicouches	0,9-0,97		
câble coaxial	0,8-1,0		
RG-58 coax	0,996		

Exemple de couplage entre deux lignes : Si les circuits X1/X2, X3/X4 de la figure 25 sont connectés par deux pistes parallèles de longueur 30 cm, il est possible de déterminer leur susceptibilité en considérant un coefficient de couplage K = 0.6.

Cette simulation (figures 26 et 27) montre qu'aux instants t = 60 ns et 125 ns, le couplage de la piste L2 à la


Exemple de diaphonie entre pistes (figu-

Piste de largeur 10 mils, de longueur 9 pouces et espacées de 20 mils. Substrat époxy (er = 4,7) d'épaisseur 50 mils.

1 mil = 10^{-3} pouce

Cette simulation (figures 29 et 30) montre que le signal induit sur la ligne d'horloge de X3A atteint le niveau 1 logique aux instants 23,4 ns et 123,4 En guise de

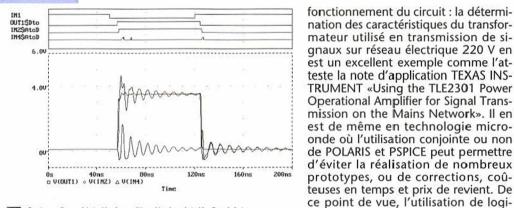
français et figure parmi les meilleurs ...) devrait s'imposer dans l'industrie électronique au cours des mois et des années à venir.

Alain RIVAT

SPICE et POLARIS sont distribués en France par ALS DESIGN - 38 rue FES-SART - 92100 BOULOGNE. Tous les exemples de cet article ont été simulés avec la version d'évaluation de PSPICE, disponible auprès d'ALS DESIGN.
SMASH est édité par DOLPHIN INTE-GRATION - 8 chemin des Clos - BP 65 - ZIRST - 38242 MEYLAN CEDEX. CECLA/DELTOUR
St-Victor de Cessieu
BP 131 - La Tour-du-Pin Cedex

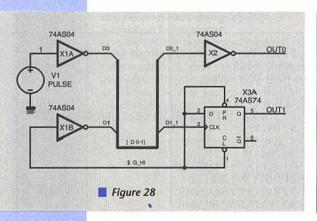
A STATE OF THE PARTY OF THE PAR

Bibliographie


«Simulation Analogique PSPICE 5.30» - A. RIVAT - Editions DUNOD TECH - 1994. Cet ouvrage couvre l'utilisation, l'exploitation et les problèmes de modélisation de PSPICE.

Concernant la technologie microondes, il n'existe que peu d'ouvrages de langue française. Peuvent néanmoins être consultés avec profit :

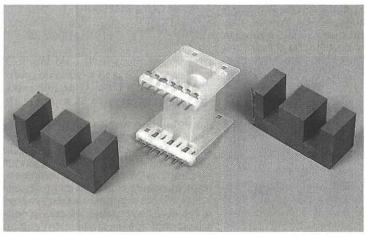
«Composants, dispositifs et circuits actifs en micro-ondes» - P.F. COMBES, J. GRAFFEUIL, J.F. SAUTEREAU - Editions DUNOD UNIVERSITE - 1985

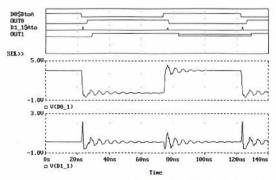

«Conception des circuits micro-ondes» - T.C. EDWARDS - MASSON - 1984 «Problèmes d'électronique impulsionnelle - Les lignes» - J.P. VABRE et GAR-LABAN - ELLIPSES - 1993, ainsi que les ouvrages du même auteur publiés

chez MASSON (4 tomes).

Restore Save List_displays View_display_detail One_delete

Figure 27




.OPT	iplage d IONS DI DIGITAL.	GÍNITSTA	ι technologie microstrip ΓΕ=0	Figure 29
A CONTRACTOR AND A	V 20ns 1	TOP AND A COMMENT OF		
V1	1	0	PULSE 0 5 20n .6n .6n 50n	100n
X1A	1	D0	74AS04	
X1B	\$D HI	D1	74AS04	
T1		D0 1 0	R=.668 L=210nH G=0 C=23.	7pF LEN=.300
T2	D1 0	D1 10	R=.655 L=203nH G=0 C=29.	6pF LEN=.300
K12	T1	T2	Lm=167nH Cm=3pF	de ell'albuma antimier
X2A	D0 1	OUT0	74AS04	
X3A	And Administration of the Control of	\$D HI	D1 1 \$D HI OUT1 OUT1L	74AS74
.END				

ciels de simulation analogique perfor-

mants tels que PSPICE ou SMASH (qui,

faut-il le rappeler, est un logiciel 100 %

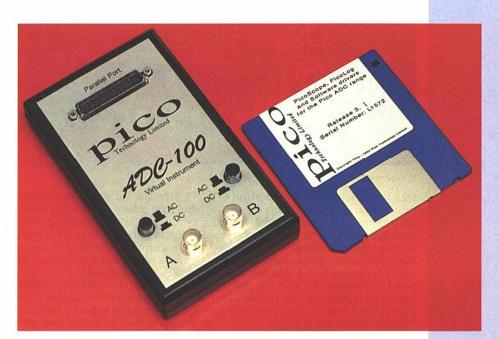
Exit Md_trace Remove_trace X_axis Y_axis Plot_control Display_control digital_Trace_comeands Macros Hard_copy Cursor Zoom conFig_colors Gool_functions

L'INSTRUMENT **VIRTUEL ADC100**

«Instrument virtuel» sur PC

par excellence, l'ADC100 est

le dernier-né de PICO


TECHNOLOGY, firme anglaise

distribuée en France par

Multipower bien connue de

nos lecteurs pour ses

convertisseurs analogiques-

numériques tenant dans une simple fiche DB25. Avec deux voies «12 bits» et

une fréquence d'échantillonnage pouvant dépasser 100 kHz, ce nouveau

produit surpasse nettement en performances l'ADC10 (dont il coûte toutefois

près de cinq fois le prix) et même l'ADC12. C'est bien évidemment une porte

grande ouverte sur toutes sortes d'applications plus pointues!

Un authentique instrument de mesure

Logé dans un coffret plastique plus conventionnel qu'un simple capot de DB25, l'ADC100 bénéficie d'une électronique beaucoup plus élaborée que celle de ses prédécesseurs, car non limitée par des contraintes de miniaturisation.

On remarque au premier coup d'oeil que les deux entrées BNC voisinent chacune avec un petit poussoir «AC/DC». Comme sur n'importe quel oscilloscope, on peut en effet soit travailler en liaison directe, soit insérer un condensateur de suppression de la composante continue. Cette disposition, qui ne présenterait que peu d'inté-rêt avec une entrée 0-5 V, prend ici toute sa valeur du fait que l'ADC100 accepte des tensions aussi bien positives que négatives.

Mieux, il dispose de sept calibres commutables par logiciel: ±200 mV, ±500 mV, ±1 V, ±2 V, ±5 V, ±10 V, et ±20 V. Et grâce à une impédance d'entrée d'exactement 1 MΩ quel que soit le calibre, n'importe quelle sonde «par dix» tout à fait ordinaire suffit pour atteindre ±200 V.

Il ne sera donc que très rarement nécessaire d'ajouter un quelconque am-plificateur externe à l'ADC100 qui, avec 4096 niveaux de quantification (2048 points en positif et 2048 points en négatif), sera aussi précis à 25 mV qu'un ADC10 à 5 V!

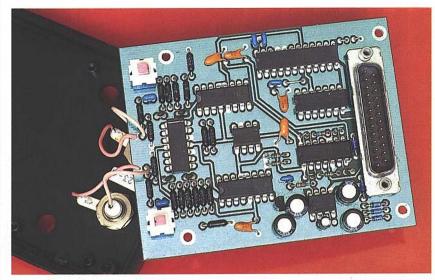
Des logiciels performants

Bien entendu, les logiciels PICOSCOPE et PICOLOG, fournis en standard avec l'ADC100, supportent intégralement ces possibilités supplémentaires. L'oscilloscope de PICOSCOPE, par

exemple, est évidemment bicourbe et peut même travailler en «X-Y» pour produire des figures de Lissajous. On pourra notamment s'en servir comme traceur de courbes caractéristiques (courant-tension) de semiconducteurs. Si on affiche simultanément les deux voies, la fréquence d'échantillonnage réelle ressort, sur un 386SX25, à 53 kHz. Cela signifie qu'un signal à 10 kHz, rectangulaire ou même sinusoïdal, sera déjà assez sévèrement déformé (mais il demeure exploitable, ce qui n'était pas le cas sur l'ADC10 ou

l'ADC12).

En mode «simple trace», par contre, on atteint dans les mêmes conditions une fréquence d'échantillonnage de 106 kHz (jusqu'à 120 kHz avec un 486 à 66 MHz) puisqu'il n'y a plus partage de ressources entre les deux canaux. Un signal rectangulaire à 10 kHz sera ainsi correctement représenté, avec tout au plus des fronts un peu moins raides qu'en réalité.


S'il fallait fixer une limite aux possibili-tés de l'ADC100, nous la placerions objectivement entre 8 et 12 kHz, alors qu'il ne fallait guère espérer dépasser 2

à 3 kHz avec l'ADC10.

Les choses sont différentes en ce qui concerne l'analyseur de spectre, puisqu'il ne s'agit plus de restituer fidèlement une forme d'onde mais d'appliquer un algorithme genre FFT (Fast Fourier Transform ou transformée de Fourier rapide).

On peut espérer, en pratique, tracer des spectres allant jusqu'à 30 ou 40 kHz, ce qui signifie que le domaine audiofréquence (20 Hz à 20 kHz) est

Une construction de qualité.

très largement couvert : la figure 1 montre par exemple qu'on distingue parfaitement le signal pilote à 19 kHz dans le spectre d'une transmission stéréophonique multiplex!

Mais une petite raie parasite à 9,5 kHz vient rappeler fort à propos qu'on n'est nullement à l'abri de phénomènes de repliement (alias) dont il faut être parfaitement conscient lors de l'interprétation des spectres.

Encore plus fort, le spectre reproduit à la figure 2 a été enregistré pendant la diffusion de publicités d'intérêt local sur RADIO CLASSIQUE: on voit parfaitement une raie trahissant un signal à

15 kHz qui, diffusé pendant toute la durée de celles-ci, sert selon toute vraisemblance à télécommander le «décrochage» des émetteurs régionaux. Cela donne évidemment des idées pour la réalisation d'un «tueur de publicité» automatique!

Le multimètre numérique hérite lui aussi de possibilités supplémentaires : Bien entendu, le voltmètre efficace vrai est désormais utilisable sans précaution particulière, tandis qu'un fréquencemètre permet de procéder à des mesures très précises de fondamental jusqu'à environ 30 kHz :

ce sera le complément idéal de l'analy-

seur de spectre qui, lui, sépare les harmoniques.

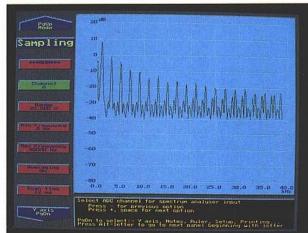
Pour les besoins courants, on pourra avantageusement visualiser simultanément six «afficheurs», c'est à dire trois par canal : un voltmètre continu, un voltmètre efficace vrai, et un fréquencemètre.

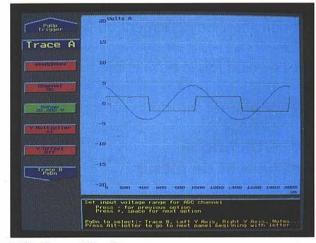
Mais dans les cas plus spécifiques, rappelons qu'il est possible de convertir une tension ou une fréquence dans n'importe quelle unité pour une lecture directe.

L'ADC100 disposant, nous l'avons vu, de sept calibres, une commutation est naturellement à prévoir, qui peut être automatique ou manuelle.

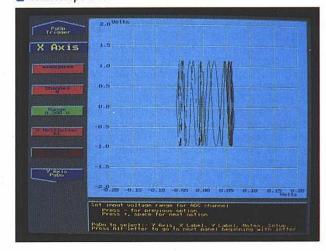
On verra ainsi le voltmètre de PICO-SCOPE chercher de lui-même le calibre offrant à tout moment la meilleure précision.

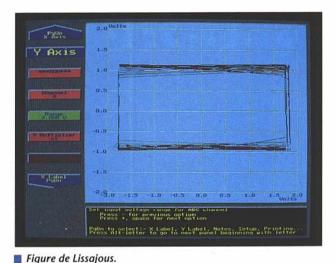
Dans le cas de l'oscilloscope, la commande de gain agira manuellement sur ce même sélecteur de calibre, alors qu'elle mettait simplement la courbe à l'échelle avec l'ADC10 ou l'ADC12.


Avec l'enregisteur de données PICO-LOG, il appartiendra là encore à l'utilisateur de fixer lui-même, avant de lancer les mesures, le calibre qu'il jugera le mieux adapté pour chaque canal.


Pour conclure

Tout en se raccordant simplement à une prise d'imprimante par un câble fourni (pas besoin d'alimentation ni même de pile!), l'ADC100 arrive à offrir des fonctionnalités et des performances comparables à celles de cer-




- Multimètre numérique à 2 voies.
- Analyseur de spectre.

- Oscilloscope bicourbe.
- Oscilloscope X-Y.

taines cartes d'acquisition de données enfichables en slot. Cela pour un prix du même ordre de grandeur, à ceci près que les logiciels d'exploitation sont fournis d'origine : c'est fort appréciable!

L'ADC100 est donc une solution à considérer de près lorsqu'une fréquence d'échantillonnage de 50 à 100 kHz peut suffire.

Sur le plan matériel, les deux seuls points faibles que nous ayons à déplorer sont la relative fragilité des poussoirs AC/DC, et l'absence d'étanchéité du boîtier qui limitera les possibilités d'utilisation dans certaines conditions de laboratoire ou de terrain (mais après tout, le clavier d'un PC ordinaire n'est pas étanche non plus !)

A ces détails près, la fabrication (ánglaise) est soignée : circuit imprimé époxy double face à trous métallisés et vernis épargne, muni de plans de masse et de pistes de garde. Malgré son extrême simplicité de mise en oeuvre, l'ADC100 est donc bel est bien un authentique instrument de mesure!

Patrick GUEULLE

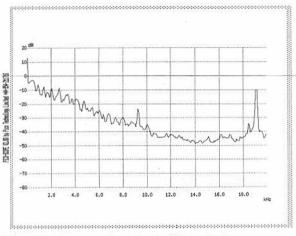


Figure 1 : le spectre d'un signal stéréo multiplex.

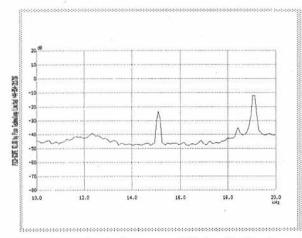


Figure 2 : un signal pilote pour publicités radiodiffusées.

- Ecran couleur 15,2 cm (6")
- Fréquence d'échantillonnage 200 Méch/s/voie en monocoup.
- 2 Géch/s/voie en mode répétitif.
- 2 voies 200 MHz.
- Interfaces RS et IEEE en standard.
- Sortie vidéo pour moniteur grand écran.
- Tracour 1 ooulours intégré en option.

ISO 9001 - Garantie 5 ans

57, rue Saint-Sauveur - BALLAINVILLIERS - 91165 LONGJUMEAU Cedex Tél.: (1) 69 10 22 40 - Fax: (1) 69 34 20 73

UNE PLATINE DE MESURE MULTI-FONCTIONS

Bien que de dimensions assez

imposantes, et supportant un

nombre relativement important

de composants, il nous a semblé

intéressant de concevoir et de

proposer un montage capable

de rendre de nombreux

services dans le domaine des

mesures en électronique

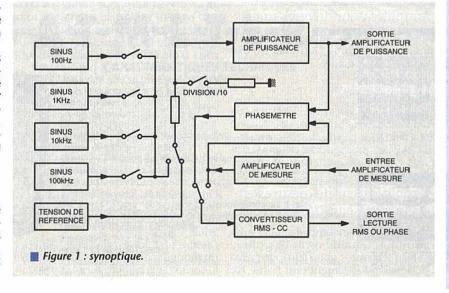
basse fréquence, domaine

que de nombreux lecteurs affectionnent

particulièrement. En effet, et comme l'on pourra en juger par la lecture des

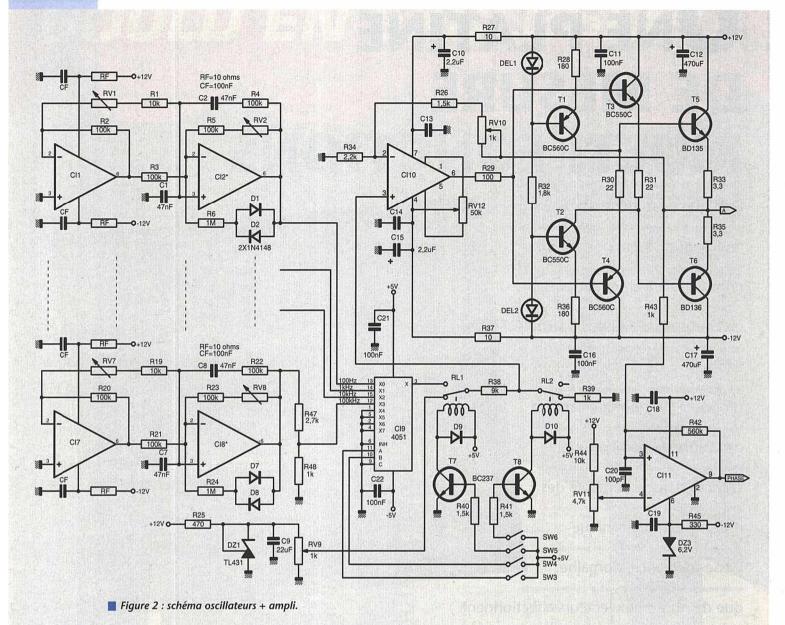
lignes qui suivent, le circuit décrit peut être qualifié de «multi-fonctions» au vu

des multiples possibilités qu'il offre.


La platine a été conçue afin de restreindre au strict minimum les fils de câblage, ce qui explique en partie son imposante surface.

De même, toutes les commutations s'effectuent par relais électromécaniques et inverseurs analogiques, ce qui donne la possibilité du pilotage par microprocesseur. En figure 1 est représenté le synoptique du montage. Comme on le remarque, il est constitué de divers étages interconnectés ou non entre eux.

Les oscillateurs


Au nombre de quatre, ils sont de type WIEN, ce qui garantit une bonne stabilité en amplitude et en fréquence. Les fréquences choisies sont 100Hz, 1kHz, 10kHz et 100kHz. Niveau de sortie et fréquence sont réglables.

La tension de référence

Fournie par une zener de référence ajustable, elle permettra de disposer d'une tension de référence très précise. Elle servira également au réglage exact du gain des amplificateurs de puissance et de mesure.

L'amplificateur de puissance

Il est en mesure de fournir un courant supérieur à 200mA. Son taux de distorsion est très faible.

Le phasemètre

Connecté en permanence à la sortie de l'amplificateur de puissance et à celle de l'amplificateur de mesure, il permet de mesurer le déphasage existant entre les signaux se présentant sur ces deux sorties.

L'amplificateur de mesures et le convertisseur RMS-CC

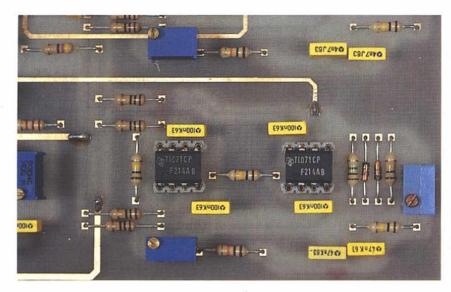
Composé de deux amplificateurs opérationnels à faible bruit et grande bande passante, son gain peut être ajusté très précisément entre 5 et 10.

Le convertisseur RMS-CC est un modèle de bonne précision qui permettra de donner la valeur efficace de tout signal présenté à l'entrée de l'amplificateur de mesure.

Les applications

Elles sont multiples et variées et chacun pourra utiliser le montage pour une application qui lui semblera la plus appropriée à ses besoins. Nous citerons trois utilisations possibles qui nous semblent être les principales :

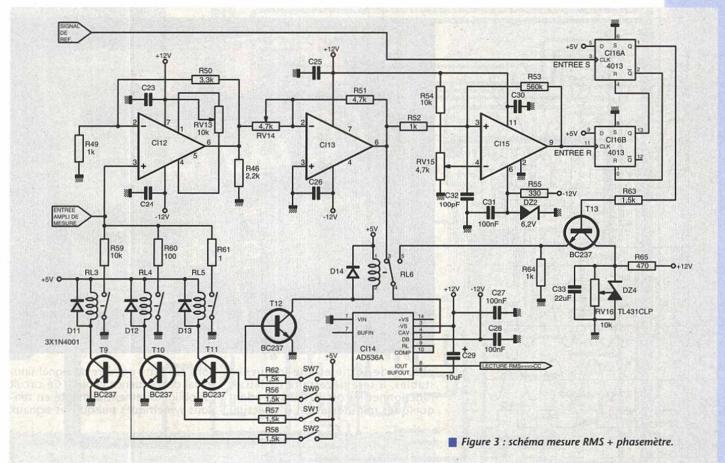
Final semilient etre les principales : - En tant que générateur de fréquences sinusoïdales à fréquences et niveau de sortie fixes (200mV et 2V). Dans ce cas, il conviendra d'intercaler une résistance (47 Ω pour une impédance de 50 Ω) entre la sortie de l'amplificateur de puissance et l'utilisation, résistance qui protègera les transistors de sortie en cas de court-circuit et qui fixera l'impédance de sortie du générateur. On pourra se servir de cette configuration en calibrateur pour un multimètre 2000 points.


Mesure de la distorsion introduite par un montage externe et connecté entre la sortie de l'amplificateur de puissance et l'entrée de l'amplificateur de mesure. Le convertisseur RMS-CC permettra de déterminer le taux de distorsion par la lecture de la valeur efficace (Vmax / 1,414 pour un signal parfait) en intercalant ou non après l'ensemble sous test un filtre notch comme nous en avons décrit un en août (n° 561).

- Enfin, l'utilisation du montage en RLC-mètre constitue la troisième utilisation possible. En effet, la valeur d'un condensateur ou d'une self connecté entre la sortie du générateur et l'entrée de l'amplificateur de mesure pourra être déterminée.

Une première mesure à l'aide du phasemètre donnera la valeur du déphasaqe introduit par le composant.

Une seconde mesure, effectuée par l'amplificateur associé au convertisseur RMS-CC, permettra de déterminer le module de l'impédance en fonction du courant traversant la capacité ou l'inductance, et ce, à l'aide de résistances mises en série avec le composant dont on désire connaître la valeur. Il est évident que cette application nécessite, vu l'importance des calculs, l'utilisation d'un logiciel et la nécessité du pilotage de la platine multi-fonctions par



un ordinateur. Une carte d'interface est donc obligatoire et c'est ce que nous vous proposerons dans une prochaine parution.

Les schémas de principe

Le premier de ceux-ci est donné en figure 2. Il regroupe les oscillateurs, l'amplificateur de sortie, la tension de référence et diverses commutations. Les oscillateurs, représentés sur la gauche du schéma sont, comme il a été dit plus haut, de type WIEN. Voyons brièvement le fonctionnement d'un de ces oscillateurs (celui représenté dans le haut du schéma). Les diodes insérées en série avec une résistance de $1 \text{M}\Omega$ présentent, lorsque le niveau de

Δ-C-E-R-S-Δ-T-M-E-T-E-R

Mesureur de champ

4990F HT (franco)

CARACTERISTIQUES TECHNIQUES

Mesureur de champ satellite 950-2050 MHz Ecran TV monochrome 5,5 pouces (14 cm) Plage de mesure : 50 à 90 dB μ V Echelle de mesure : 50 à 70 dB μ V

Echelle de mesure : 50 à 70 dB μV Impédance d'entrée : 75 Ω embase F

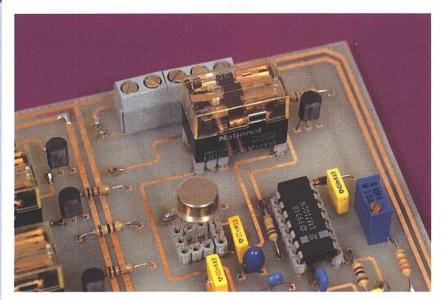
Accord de la fréquence : par potentiomètre multitours. Largeur de bande FI : 27 MHz.

Sélection de polarité par inverseur 14 V/arrêt/18 V.

Affichage: a) du spectre dans toute la bande 950-2050 MHz. b) du spectre expansé d'une partie ± 50 MHz. c) de l'image avec bandeau indicateur de niveau. d) de l'image entière.

Marqueur de fréquence par ligne grise superposée au spectre. Buzzer commutable de fréquence proportionnelle au niveau du signal.

Atténuateur d'entrée commutable. Dimensions : 24 x 14 x 27 cm. Poids : 5,1 kg avec batterie.

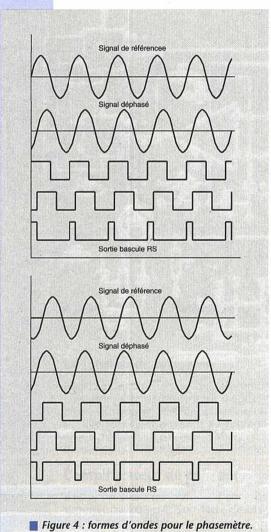

Accessoires fournis : chargeur de batterie, housse de protection, câble coaxial, câble allume-cigares.

ACER composants 42, rue de Chabrol 75010 PARIS

Tél.: 47 70 28 31 Fax: 42 46 86 29

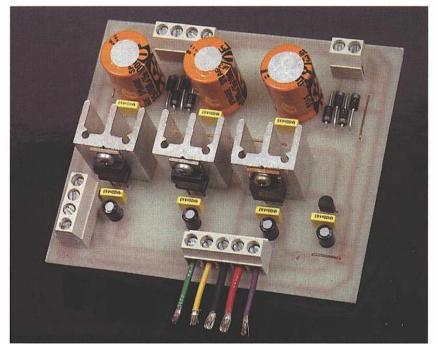
REUILLY composants 79, bd Diderot 75012 PARIS

Tél.: 43 72 70 17 Fax: 42 46 86 29

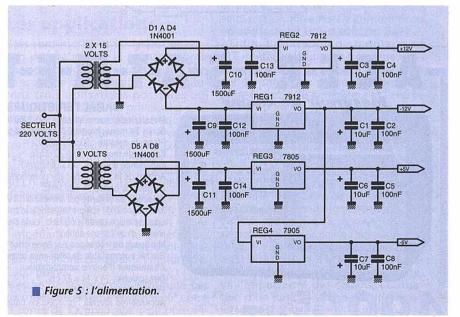


une quelconque mesure. En effet, les diodes étant sensibles à la température, une bonne stabilité ne sera obtenue qu'au bout d'un certain temps de fonctionnement.

La tension de référence est fournie par une diode zener ajustable, une TL431CLP. La tension minimum de règlage est de 2,45V, ce qui explique la présence de la résistance ajustable RV9 qui permettra d'obtenir une tension inférieure.


Vient ensuite le commutateur analogique CI9, un CMOS 4051. Seules quatre de ses entrées sont utilisées. Les entrées restantes sont connectées à la masse ainsi que sa troisième broche d'adresse.

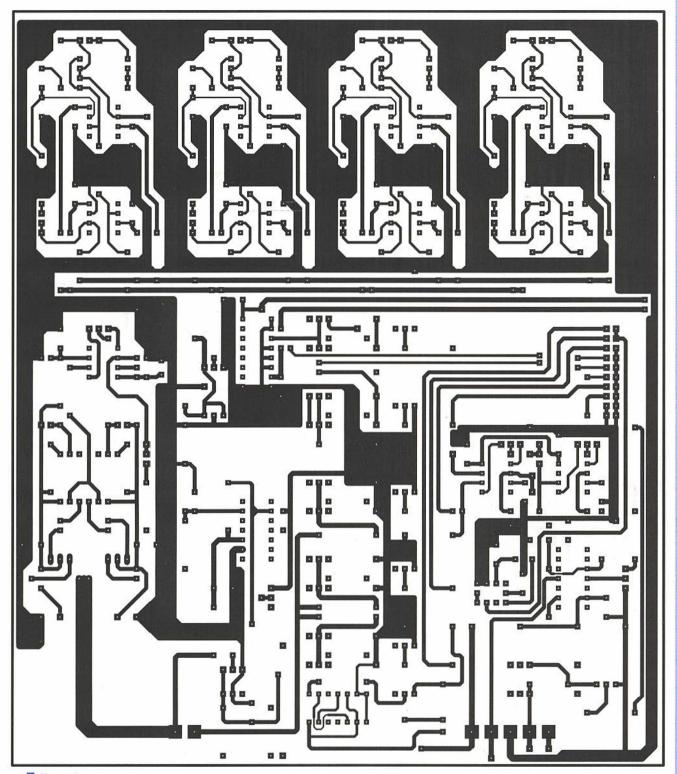
Suivant le niveau appliqué sur ses broches d'adressage A et B (0V ou +5V), l'une des entrées sera reliée à sa broche de sortie, et l'on disposera

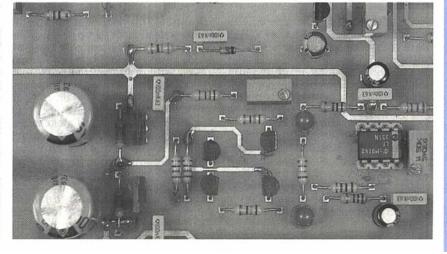


sortie de l'amplificateur opérationnel est proche de 0V, une très grande résistance. Le gain est alors à son maximum. L'ajustable et la résistance mis en parallèle limitent l'action de ces diodes. La résistance des diodes, et donc le gain, diminue lorsque la tension de sortie augmente, ce qui évite l'écrêtage mais maintient l'entretien des oscillations.

La résistance ajustable RV2 permet le règlage de l'amplitude des sinusoïdes. La fréquence du signal sera réglée à l'aide de RV1. Afin d'obtenir une am-

plitude de sortie et une fréquence stables, il sera nécessaire de laisser fonctionner les oscillateurs pendant quelques minutes avant d'effectuer donc sur cette dernière du signal sinusoïdal de fréquence choisie. Ce circuit est obligatoirement alimenté en tensions symètriques puisque les signaux




Figure 6

qu'il doit véhiculer sont de type alternatif.

La sortie du circuit 4051 est connectée au contact travail du relais RL1. Le contact repos reçoit la tension de référence. C'est donc l'un de ces deux signaux que l'amplificateur de puissance recevra suivant que le transistor T7 alimente ou non le relais.

Le transistor T8 commande le relais mettant en fonction la résistance R39 constituant avec la résistance R38 un diviseur de tension de rapport 1/10ème.

L'amplificateur de puissance est centré autour de CI10. Son alimentation est assurée par les cellules de filtrage constituées des résistances R27 et R37 et des condensateurs C10, C13, C14

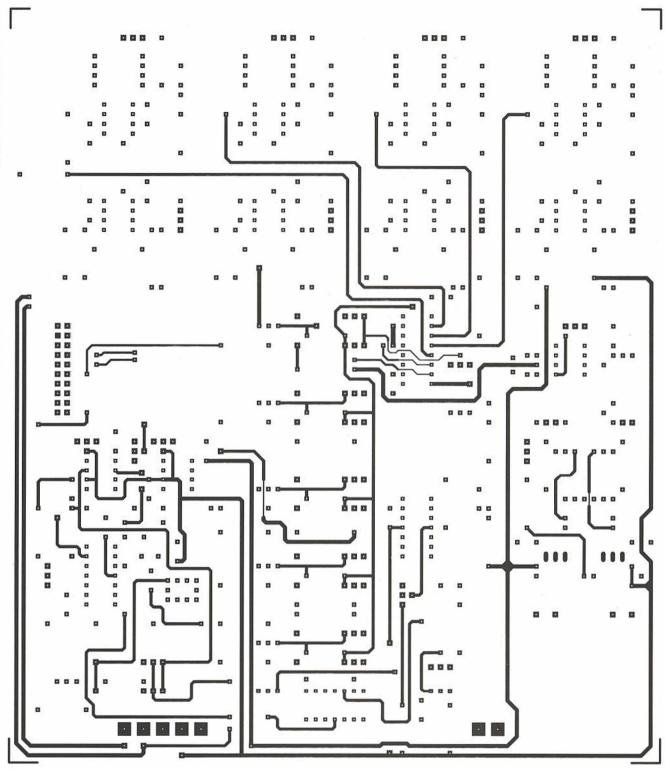
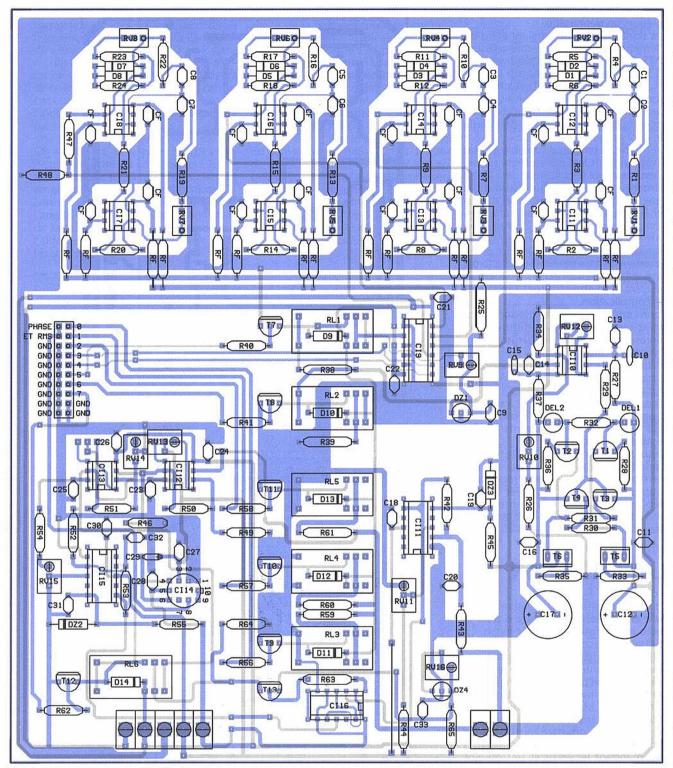


Figure 7

et C15. Le gain de l'ensemble est fixé par les résistances R26, R34 et RV10. Il a été prévu une résistance ajustable (RV12) de règlage de la tension de décalage afin d'annuler toute tension continue d'offset en sortie de l'amplificateur.

Ce dernier permet l'ajustage très précis du gain qui a été choisi de 2. Le circuit constitué des diodes DEL1, DEL2, R32, R28, R36, T1 et T2 fixe le courant de repos de l'étage de puissance. Les transistors de puissance T5 et T6 devront être munis de dissipateurs. Comme il a été dit plus haut, si l'on désire utiliser le circuit en générateur de fréquences, il sera nécessaire d'intercaler une résistance de puissance non inductive (en

principe 470hms, 1Watt) entre le montage testé et la sortie de l'amplificateur, ce qui protègera ce dernier en cas de court-circuit. Sinon, les transistors de sortie n'y survivraient pas.


En sortie de l'amplificateur de puissance est connectée l'entrée d'un comparateur rapide, CI11 (LM710). Les créneaux générés par ce circuit, et centrés sur la sinusoïde, seront utilisés comme signal de référence par la partie phasemètre du montage.

Son entrée inverseuse est reliée à un ajustable qui permet le décalage de son point de basculement, et donc la modification de la largeur des créneaux de sortie.

Passons maintenant à la figure 3 sur

laquelle est représentée la suite du schéma de principe. L'amplificateur de mesure est constitué de deux amplificateurs opérationnels de type OP61, à faible bruit et grande bande passante. Le premier (CI12) voit son gain fixé invariablement à 5. Le second (CI13), par la résistance ajustable RV14 d'entrée peut délivrer un gain ajustable. Suivant l'usage qui sera fait de la platine multi-fonctions, trois relais (RL3, RL4 et RL5) permettent l'insertion entre l'entrée de l'amplificateur et la masse, d'une résistance de mesure. La sortie du dernier AOP est connectée à l'entrée d'un second comparateur chargé de générer des créneaux qui seront acheminés vers la seconde entrée du

-12U +12U GND +5U

Figure 8

phasemètre. Ce circuit (CI15) est configuré de la même manière que CI11, avec une possibilité de règlage de la largeur des créneaux.

Le convertisseur RMS-CC (CI14) de type AD536, a son entrée reliée au commun d'un relais (RL6) dont la fonction est de distribuer soit le signal provenant de la sortie de l'amplificateur de mesure, soit celui issu de la sortie du phasemètre.

On obtiendra ainsi sur sa sortie ou la valeur efficace du signal présent en entrée de l'amplificateur, ou une tension qu'il suffira de traiter mathématiquement afin d'obtenir la valeur du déphasage. En effet, on mesure la tension RMS sur une période T du signal:

Vrms = Vmax $\sqrt{Tp/T}$ où Tp est la durée de l'impulsion positive issue du phasemètre

et T = 1 / fd'où $Tp = T (Vrms^2 / Vmax^2)$

et (Tp / T) x 360° = angle de déphasage

Le convertisseur AD536 permet de traiter des signaux atteignant une fréquence de 2MHz pourvu qu'ils aient une amplitude minimale de 1V. Le maximum d'erreur introduite par ce circuit ne dépasse guère 0,5%. On peut ainsi être certain d'obtenir un résultat suffisamment précis pour ce type de mesures.

Le phasemètre est centré autour de CI16, une double bascule CMOS 4013, configurée en bascule RS (RESET - SET). Le positionnement de l'une des bascules a pour conséquence la remise à zéro de l'autre. Ce positionnement se produit sur chaque flanc montant présents aux entrées. Les diagrammes de la figure 4 montrent clairement le créneau disponible en sortie de la bascule RS suivant les signaux présentés aux deux entrées. Le seul inconvénient présenté par la configuration en bascule RS de ces deux bascules D est le fait qu'elle connait un état interdit, c'est-àdire la présence aux deux entrées dans le même temps d'un flanc montant: cela se traduit par un pic très court en sortie.

Dans la pratique, cela ne constitue pas

564 / 29

une gêne bien grande puisqu'il y aura toujours un déphasage.

Les signaux de sortie auraient été difficilement utilisables par le convertisseur RMS-CC sans le secours du transistor T13. En effet, comme chacun sait, les circuits logiques présentent une tension non nulle à l'état 0 (plusieurs dizaines de mV), qui aurait due être prise en compte lors des calculs de l'angle de déphasage.

De même, la tension disponible à l'état 1 varie suivant le circuit intégré utilisé. C'est pourquoi le collecteur de T13 est alimenté par une tension issue de la zener règlable DZ4, qui permet d'ajuster le niveau des créneaux à une tension pouvant varier entre 2,5V et environ 4,2V. Nous obtenons ainsi des signaux dont le niveau bas est pratiquement de 0V et le niveau haut fixé à une valeur bien précise. Les calculs peuvent ainsi être effectués sans aucune complication.

Pour conclure cette description théorique, reportons-nous à la figure 5 qui représente la platine de l'alimentation. Quatre tensions sont utilisées par la platine principale : +12V et -12V pour la partie analogique et +5V et -5V pour la partie logique.

Rien de bien particulier n'est à signaler pour ce montage puisqu'il n'emploie que des composants courants tels les régulateurs de tension.

Deux transformateurs ont été utilisés car la tension de 15V alternative aurait été trop importante pour le régulateur fournissant le +5V, ce dernier devant débiter un courant relativement important demandé pour l'alimentation des relais.

LA REALISATION

Le circuit imprimé de la platine principale est représenté en figure 6 pour le recto et en figure 7 pour le verso. La réalisation de ce dernier demande une attention particulière vu ses dimensions importantes. Le câblage sera réalisé en s'aidant de la figure 8 représentant le schéma d'implantation des composants. Malgré le circuit double face, deux straps sont à implanter qu'il ne faudra pas omettre, ainsi que les diodes de protection des transistors commandant les relais et se trouvant sous ces derniers.

L'alimentation de la carte multi-fonctions s'effectue à l'aide d'un bornier à vis à 5 points. Même chose pour la sortie de l'amplificateur de puissance et l'entrée de l'amplificateur de mesure. La commande des diverses commutations et la sortie du convertisseur RMS-CC s'effectue à l'aide d'un connecteur à 20 points pour câble plat.

Les transistors de sortie de l'amplificateur seront obligatoirement munis de dissipateurs thermiques.

Le circuit imprimé de l'alimentation est représenté en figure 9, et son schéma d'implantation l'est en figure 10. Les régulateurs de tension, mis à part celui générant le -5V seront également munis de radiateurs de la plus grande dimension possible, vu le courant qu'ils doivent débiter.

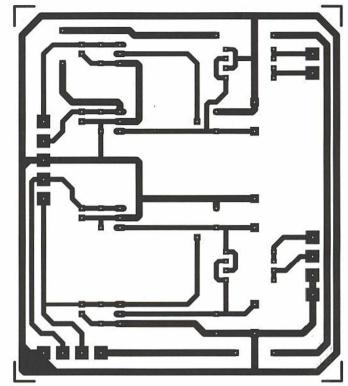
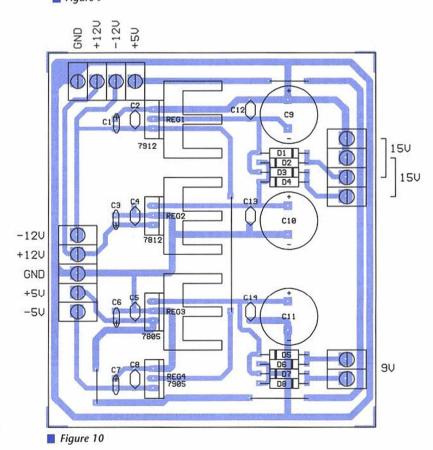



Figure 9

Les essais et les réglages

Le câblage dûment vérifié, ainsi que la présence des diverses tensions d'alimentations, on pourra placer les circuits intégrés sur leur support respectif. On commencera les règlages par les quatre oscillateurs. Vérifier la présence des oscillations en sortie, et règler l'amplitude et la fréquence. Ces manipulations devront être répétées plusieurs fois car il existe une très légère

interaction entre ces deux règlages : l'ajustage de l'amplitude agit sur la valeur de la fréquence.

On passera ensuite à la tension de référence qui devra être fixée très exactement à 2 V à l'aide de la résistance ajustable RV9.

On pourra alors s'occuper du règlage de la tension de décalage qui existera peut-être en sortie de l'amplificateur de puissance. Cet offset sera annulé à l'aide de la résistance RV12 en court-circuitant l'entrée.

En commutant les divers interrupteurs,

on vérifiera la présence en sortie de l'amplificateur des signaux de diverses fréquences et on en ajustera l'amplitude à exactement 2Veff soit 5,65 V crête à crête. A l'aide de la tension de référence on vérifiera la valeur qui devra alors être de +2V en sortie du convertisseur RMS. Cet ajustage se fera à l'aide de RV10. Vérifier également que par la manoeuvre du relais RL2, la tension de sortie se trouve divisée par 10. On s'assurera de la présence des créneaux en sortie du comparateur CI11. La résistance RV11 aura son curseur amené complètement vers la masse. Deux règlages sont à effectuer sur l'amplificateur de mesure: l'annulation de la tension de décalage en sortie à l'aide de RV13 et le gain à l'aide de la résistance RV14.

Le deuxième comparateur (CI15) sera ajusté de la manière suivante: connecter la sortie de l'amplificateur de puissance à l'entrée de l'amplificateur de mesure, l'oscillateur 1kHz étant commuté. A l'aide d'un oscilloscope, vérifier la concordance de la largeur des créneaux de sortie des deux comparateurs. Au besoin, règler la largeur du signal de sortie de CI15 à l'aide de RV15. Vérifier enfin le bon fonctionnement du convertisseur RMS-CC. Une tension de +2V continue présente sur son entrée devra avoir pour résultat une tension de +2V en sortie. Et bien sûr on pourra dès lors se servir de la lecture de la tension de sortie du convertisseur pour parachever sûrement les règlages d'amplitude de toute la chaîne.

P. OGUIC

NOMENCLATURE

Résistances :

RF: $10 \Omega (X16)$

R1, R7, R13, R19, R44, R54: 10 kΩ

R2, R3, R4, R5, R8, R9, R10, R11,

R14, R15, R16, R17, R20, R21,

R22, R23: 100 kΩ

R6, R12, R18, R24: 1 MΩ

R25, R65: 470 Ω

R26, R40, R41, R56, R57, R58,

R62, R63: 1,5 kΩ

R27, R37: 10Ω

R28, R36: 180 Ω

 $R29:100 \Omega$

R30, R31: 22 Ω

R32: 1.8 kΩ

R33, R35, R50: 3,3 Ω

R34: 2.2 kΩ

R38: 9 kΩ 0,5%

R39: 1 $k\Omega$ 0,5%

R42, R53: 560 kΩ

R43, R46, R48, R49, R52, R64 : $1 \text{ k}\Omega$

R45, R55: 330 Ω

 $R47: 2,7 k\Omega$

 $R51:4,7 k\Omega$

 $R59:10 k\Omega 0,5\%$

 $R60:100 \Omega 0,5\%$

 $R61:1 \Omega 0,5\%$

RV1, RV3, RV5, RV7, RV11,

RV14, RV15: 4,7 kΩ multitours

RV2, RV4, RV6, RV8,

RV13, RV16: 10 kΩ multitours

RV12: 50 kΩ multitours

RV9, RV10: 1 kΩ multitours

Condensateurs:

CF: 100 nF (X16)

C1, C2: 47 nF

C3, C4: 4,7 nF

C5, C6: 470 pF

C7, C8: 33 pF

C9, C33: 22 µF 16 V

C10, C15: 2,2 µF 16 V

C11, C13, C14, C16, C18, C19,

C21, C22, C23, C24, C25, C26

C27, C28, C30, C31: 100 nF

C12, C17: 470 µF ou 1000 µF 16 V C20, C32: 100 pF

C29: 10 µF 16 V tantale

Semiconducteurs:

T1, T4: BC560C

T2, T3, T13: BC550C T5: BD135

T6: BD136

T7, T8, T9, T10, T11, T12: BC237

D1 à D8: 1N4148

D9 à D14: 1N4001 à 1N4007

DZ1, DZ4: TL431CLP DZ2, DZ3 : zener 6,2V

DEL1, DEL2: diode DEL rouge

Circuits intégrés :

CI1, à CI8: TL071

CI9: 4051

CI10: LF351

CI11, CI15: LM710

CI12, CI13: OP61 (ANALOG DEVICES)

CI14: AD536 (ANALOG DEVICES)

CI16: 4013

Divers:

11 supports pour circuit intégré 8 broches 3 supports pour circuit intégré 14 broches support pour circuit intégré 16 broches 6 relais bobine 5 V NATIONAL HB2

CARTE ALIMENTATION

Condensateurs:

C1, C3, C6, C7: 10 µF 25 V

C2, C4, C5, C8, C12, C13, C14: 100 nF

C9, C10, C11: 1500 µF à 2200 µF 25 V

Semiconducteurs:

D1 à D8: 1N4001 à 1N4007

Circuits intégrés :

REG1: régulateur négatif 12 V

REG2: régulateur positif 12 V

REG3: régulateur positif 5 V

REG4: régulateur négatif 5 V

Divers:

1 transformateur 2 X 15 V 10VA

1 transformateur 9 V 10VA

PROGRAMMATEUR UNIVERSEL ALL07 (sous PC)

Deux modèles disponibles: 1º Avec la carte interne au PC 2º Pour port parallèle Le ALLO7 programme EPROM -EEPROM - PROM - PAL - Flash EPROM - MONOCHIP, etc.,

F7 - ROUTE DOS :

Saisie de shémas et de ROUTAGE AUTO de circuits imprimés **EZ-ROUTE WDS:**

Version windows de EZ-ROUTE EASY-PC:

Saisie de shémas et de ROUTAGE AUTO de circuits imprimés

Carte d'application :

Modèle pour 80C196KB Modèle pour 80188 Modèle pour 80188 Modèle pour 80C552 Modèle pour 68HC11 Modèle pour 68HC16 Modèle pour 80535 Modèle pour 8031/51/52

Handyprobe (1KHz) :

Osciloscope + Voltemètre + Analyseur de spectre

- Handyscope (40KHz) : Osciloscope + Voltemètre
- + Analyseur de spectre
- TP208 (20 MHz):

Osciloscope + Voltemètre + Analyseur de spectre + Enregistreur

SPICEAGE For Windows

Simulateur Analogique de shémas (logique en option)

ID160 Analyseur logique (Carte)

ID160 Analyseur Logique (Carte) - 16 voies - 50 MHz

ID161 Analyseur Logique (Carte) - 16 voies - 100 MHz

- LA 32 : 32 voies 400 Mhz

Autres outils

- Emulateurs de microprocesseurs
- Croos compilateurs C. PASCAL, BASIC
- Cross Simulateurs d'EPROM
- Testeurs de composants
- Compilateur PAL PLD
- Programmateurs d'EPROM

WIELENS

BP 67 - 93800 EPINAY SUR SEINE Tél. 48 41 80 36 - Fax : 48 41 80 29

DEVELOPERS

LES MUTUELLES DU MANS ASSURANCES

vous présentent

ENJEU

l'assurance multirisque spécialement conçue pour votre activité

ENJEU, c'est:

UNE VÉRITABLE TOUS RISQUES PME-PMI

UN CONTRAT UNIQUE

Cela racilite votre analyse et votre gestion

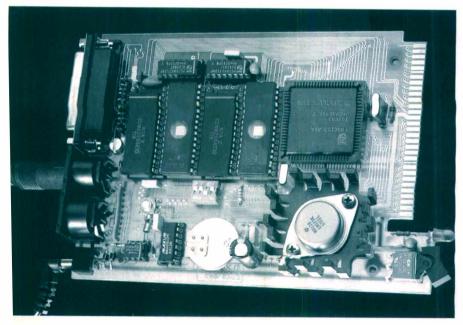
UN CONTRAT CONFECTIONNÉ A VOS MESURES

Vous choisissez vos garanties à la carte en fonction de vos besoins et moyens

Pour plus d'informations, contactez-nous :

les mutuelles du mans assurances

L'autre logique de l'assurance



19/21, rue Chanzy - 72030 le Mans cedex 09 - Tél. : 43 41 72 72

OUTILS DE DÉVELOPPEMENT ET D'APPLICATION

Cet ensemble d'outils convient parfaitement, pour une maîtrise rapide d'un micro système écrit en langage C.

La carte peut rester une carte de développement ou devenir la carte autonome de l'application visée, boitier disponible.

EDIA

LOGICIELS FOURNIS:

- Compilateur C 68000
- Assembleur
- Linker (éditeur de lien)
- Driver imprimante
- Driver série RS 232
- Driver horloge calendrier
- Driver IIC
- Fonctionne sur PC compatible

CARTE FOURNIE

- Microcontrôleur CPU 68000
- 128 Ko de REPROM (ext. à 2 Mo)
- 256 Ko de RAM (ext. à 512 Ko)
- Pile Lithium pour RAM + horloge
- Superviseur d'alimentation
- Bus I2C
- Sortie TTL ou RS 232
- Horloge calendrier
- Extension Bus 68000
- Régulation 5 volts

E.D.S.A

Résidence les Grangettes R.d.C. bât.C 6, Bd Joliot-Curie 34200 Sète

Tél.: 67.51.45.01 Fax: 67.51.17.92

CONVERTISSEUR CC-CC ISOLÉ **FAIBLE PUISSANCE**

L'utilisation de convertisseurs CC-CC est

devenue de nos jours courante du fait

des nombreux avantages qu'ils

procurent : rendements élevés,

miniaturisation, (faible) coût, très

grand choix possible, etc. Mais il peut y avoir en pratique quelques

problèmes quand la puissance demandée est faible, et que le rendement du

circuit est une caractéristique essentielle.

Ces convertisseurs peuvent en général être utilisés en abaisseurs, en élévateurs,

en inverseurs, et parfois suivant une combinaison de ces fonctions, ce qui

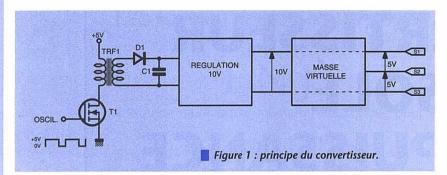
ajoute aux possibilités des circuits.

Ils peuvent aussi parfois être utilisés pour procurer une isolation totale entrée-sortie afin d'alimenter des équipements sensibles, et il faut bien dire que c'est là que le bât blesse, car autant il est aujourd'hui facile d'obtenir des convertisseurs CC-CC sans isolation (c'est à dire que l'entrée et la sortie ont un point commun) ayant un bon rendement même pour un très faible courant de sortie, autant il peut être délicat de trouver des convertisseurs CC-CC isolés et ayant un bon rendement quand la consommation de la charge est faible.

Pour bien voir où se situe le problème, considérons le cas d'un équipement consommant un courant de ±1,5 mA sous ±5 Volts, parfaitement régulé, sans résidus de commutation, et nécessitant une isolation totale (ce n'est pas un cas d'école puisque ce problè-me s'est effectivement posé à l'au-

Supposons de plus que l'on dispose d'une tension + 5V bien propre. Comment passer du (0,+5V) au ±5V isolé? La réponse est évidemment d'utiliser un convertisseur CC-CC du commerce puisque de tels produits existent industriellement pour de faibles puissances (1 W par exemple), et peuvent fournir Dans le cas d'un convertisseur CC-CC (Si ! Si ! cela existe, mais les prix ne

les tensions requises régulées ou non. Si ces tensions ne sont pas régulées (convertisseur de plus faible coût), il sera néanmoins indispensable de mettre en place des régulateurs linéaires pour obtenir les ±5V souhaités, ce qui impose donc en général de sélectionner un convertisseur ayant des sorties ±12V, et qui laisse à priori prévoir un certain gâchis côté rendement. Si ces tensions sont fournies régulées linéairement, cela signifie que le fabriquant a incorporé des régulateurs dans le boîtier, ce qui simplifie la vie de l'utilisateur, mais conduit en général à un coût plus élevé, et aussi à une baisse du rendement par rapport au modèle non régulé, bien que cette baisse puisse être moins forte que dans le cas précédemment envisagé (ajout de régulateurs extérieurs) du fait de caractéristiques de conversion mieux ajustées par le fabricant.

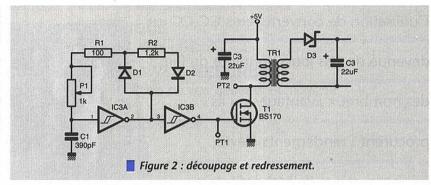

La question du rendement dont nous venons de parler est maintenant posée, et va s'avérer être en fait la question essentielle. La plupart des fa-bricants garantissent leurs produits avec des rendements de 70 à 90 %, ce qui peut paraître excellent, mais peut s'avérer en pratique catastrophique.

ayant une puissance nominale Ps de 1W, un rendement de 80 % signifie que la puissance prélevée sur la source est Pe = 1,25 W puisque l'on a alors Ps/Pe = 1/1,25 = 0,8, ce qui revient à dire que la consommation propre du convertisseur est dans ce cas de 0,25 W, soit un courant de 50 mA si l'on suppose une alimentation en 5 Volts. Le problème crucial qui se pose alors est qu'en pratique, dans la très grande majorité des cas, cette consommation est quasiment constante quelle que soit la puissance de sortie demandée, ce qui revient à dire que pour le cas qui nous intéresse (±1,5 mA sous ±5V), le rendement global sera ridicule.

On a en effet dans ce cas une puissance de sortie Ps = $2 \times 1,5 \times 5 = 15 \text{ mW}$ pour une puissance d'entrée Pe # 250 + 15 = 265 mW, ce qui conduit à un rendement ρ = 15/265 = 0,057, soit 5,7 %. Ainsi que l'on peut le constater, on est très loin des 80 % de départ, encore n'avons-nous même pas tenu compte des pertes inévitables dans la régulation linéaire qui devra suivre...

Bien évidemment, la situation s'améliore un peu si l'on utilise des convertisseurs CC-CC de plus faible puissance

• le transformateur assurant l'isolation et le transfert d'énergie,


• le redressement assuré par diode et condensateur,

• la régulation linéaire procurant les 10 V en sortie,

• une masse virtuelle permettant d'obtenir ainsi que nous le verrons du ±5V, du +5V/+10V, ou bien du -5V/-10V. Il est apparent sur le schéma qu'il n'y a pas de rétroaction de la sortie sur l'oscillateur. Cela a été fait pour des raisons de simplicité car il aurait fallu pré-

sont plus tout à fait comparables...): Pour un convertisseur d'une puissance de 0,3 W ayant un rendement de 80 % à pleine charge, la consommation sur la source est de 0,375 W. Comme précédemment, on observe dans la majorité des cas une consommation propre du convertisseur pratiquement constante sur la plage des puissances de sortie, et qui est donc ici égale à 75 mW, c'est à dire à un courant de 15 mA à vide.

Dans le même cas de figure que précédemment, les puissances et le rende-

au cahier des charges : c'est ce qui a été fait par l'auteur, et qui est présenté dans les lignes suivantes.

RÉALISATION PRATIQUE

Le problème se pose très simplement de la façon suivante: il faut réaliser un convertisseur CC-CC totalement isolé, capable de fournir un courant de \pm 5 mA maximum (au lieu de \pm 1,5 mA pour conserver une marge de sécurité a priori) sous une tension de \pm 5V parfaitement régulée (en linéaire et non une tension avec une ondulation résiduelle due au découpage), alimenté en 5V, et ayant une consommation à vide de 2 ou 3 mA au maximum, pour préserver un rendement acceptable.

voir une boucle de retour qui soit, elle aussi, totalement isolée. Bien que cela soit techniquement possible, une telle contrainte aurait certainement conduit à une augmentation de la consommation, ce qui aurait été à l'encontre du but recherché.

Découpage et redressement

La figure 2 donne le détail de la réalisation jusqu'au redressement. On y trouve un oscillateur de relaxation, bâti autour d'une porte trigger de Schmitt, alimenté en +5V. Attention, le circuit utilisé est un 74C14 qu'il serait hasardeux de vouloir remplacer par un 74HC14 ou un 74HCT14, ces composants n'ayant pas tout à fait les mêmes comportements. On remarquera dans le rebouclage deux diodes 1N4148 (D1, D2) permettant d'avoir un rapport cyclique convenable, et un potentiomètre dont le rôle est d'ajuster la fréquence de travail (aux environs de 300 kHz) au mieux. Cette première porte est suivie d'une deuxième qui sert de tampon, dont on peut éventuellement se passer si le 74C14 fait partie d'un montage plus complexe, et qui commande un transistor MOS-FET canal N. Quand la tension au Point Test 1 (PT1) est nulle, le transistor T1 est bloqué, et si elle est égale à 5V, T1 conduit, ce découpage produisant alors une tension alternative en sortie du transformateur, tension redressée par la diode Schottky 1N5819, et filtrée par le condensateur C3. Il est à signaler que l'utilisation d'une diode genre 1N4007 est à proscrire sous peine de voir le rendement partir dans des profondeurs peu souhaitables. La figure 3 donne les formes d'ondes obtenues aux Points Test 1 et 2 avec et sans charge, et sur lesquelles on peut constater quelques différences : la trace 4 est prise sur le drain sans charge en sortie du convertisseur, la trace 2 correspond au même point avec une

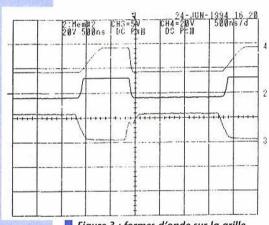
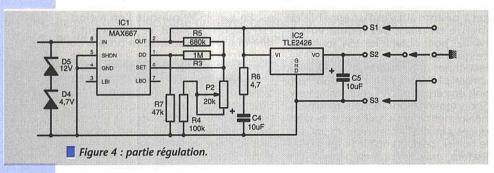



Figure 3 : formes d'onde sur la grille et le drain du transistor.
Trace 4 : tension drain sans charge en sortie du régulateur.
Trace 2 : tension drain avec charge de 1 kΩ.

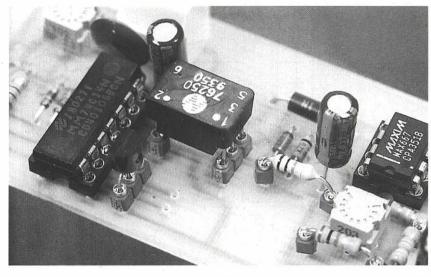
ment deviennent $Ps = 2 \times 1,5 \times 5 =$ 15 mW, Pe # 75 + 15 = 90 mW, et $\rho =$ 15/90 = 0,17, soit 17 %. Ainsi que l'on peut le constater, il y a progrès, mais à un coût qui peut être très supérieur à celui des convertisseurs précédents : les convertisseurs 1W à sorties ±12V non régulées coûtent actuellement environ 90 F, tandis que ceux de 0,3 W peuvent atteindre un coût de 300 F sans difficultés. De toutes façons, et indépendamment du prix, que faire d'un tel dispositif si le problème de la consommation est essentiel? Une solution consiste à essayer d'en développer un soi-même qui puisse répondre

Ceci étant posé, il apparaît immédiatement que pour avoir une chance de tenir ces objectifs, il faudra laisser de côté les régulateurs classiques type LM 7805 et LM 7905 (ou similaires) qui ont le très mauvais goût d'avoir une consommation propre à vide de l'ordre de 3 mA, et se diriger vers des circuits un peu plus exotiques.

La figure 1 donne la réalisation de principe d'un tel convertisseur où l'on peut reconnaître les principales fonctions : • un oscillateur fournissant le signal de

• un MOS-FET commandant le transformateur,

découpage


charge de $1k\Omega$ en sortie, et la trace 3 correspond à la grille du transistor. Comme on peut le constater, la présence d'une charge en sortie se traduit par un amortissement assez important du transformateur.

Régulation 10 V

La figure 4 correspond à la partie régulation linéaire. Ainsi que signalé plus haut, il a fallu se diriger vers des circuits un peu spéciaux quoique courants, pour avoir une consommation minimum dont nous dirons quelques mots plus loin. Le rôle principal est tenu par le MAX 667 qui est un régulateur MAXIM, (marque bien connue pour ses produits innovants), et qui a l'avantage d'avoir d'une part une consommation propre réduite, puisqu'elle est de l'ordre de 100 µA pour un courant de sortie de 3 mA, et de 300 µA pour un courant de sortie de 10 mA, et d'autre part, de pouvoir fonctionner avec une faible chute de tension entrée-sortie :

150 mV pour Is = 200 mA, et 20 mV pour Is = 20 mA. On remarquera aussi au passage la présence des diodes zener D4 et D5 qui limitent la tension à 16,7V afin de protéger le circuit pour lequel la tension maximum admissible en entrée est de 18V. Cette protection n'est en fait utile que si l'on modifie les valeurs des résistances en série avec les diodes D1 et D2 (rapport cyclique) et/ou que l'on modifie la fréquence (par Pot1 et C1) dans des proportions importantes lors de la mise au point du montage.

Ce circuit est prévu pour fonctionner soit en régulateur +5V, il suffit pour cela de connecter sa borne 6 (SET) à la masse, soit avec une tension de sortie ajustable en connectant cette même borne 6 à un pont de deux résistances. C'est évidemment cette dernière solution qui a été choisie, puisque nous voulions en sortie une tension de 10V, mais en plus de ces résistances (R4, R5 et Pot2), on remarquera la présence de

R3 et R7. Ces résistances sont là en protection, pour le cas où la tension en entrée du régulateur aurait tendance à baisser au-dessous de 10V. L'absence de ces résistances se traduirait dans ce cas (l'auteur en a fait l'expérience gratuite ...) par une consommation qui pourrait devenir tout à fait anormale, de l'ordre de plusieurs dizaines de mA. Cette situation est bien entendu possible, mais à éviter sous peine de destruction éventuelle par surchauffe du composant. Les résistances R3 et R7 évitent ce phénomène en utilisant la broche de détection de Tension Basse, et en augmentant dans ce cas la tension sur l'entrée SET.

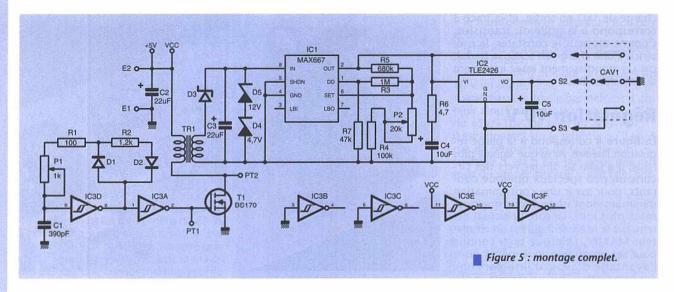
Dans le cas où la tension amont chute au-dessous de 10V, il y a apparition d'un courant à la borne 1 (DD), ce qui a pour effet d'augmenter la tension à la borne 6 (SET), et donc de diminuer la tension de sortie qui suit alors régulièrement la tension amont. Le tableau 1 donne une idée du phénomène pour les valeurs faibles des résistances de charge. Le potentiomètre, pour sa part, permet simplement d'ajuster la tension de sortie à la valeur souhaitée, 10V dans le cas présent.

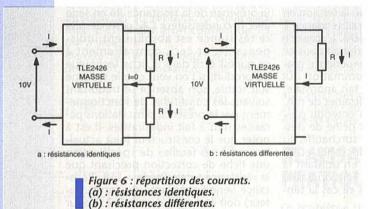
Dernier point concernant le MAX 667, la présence de la résistance R6 en série avec le condensateur C4 : cette dernière résistance est absolument indispensable, et ceci, contrairement à ce qui est écrit dans la fiche technique du produit, si l'on veut que le système soit stable, son absence se traduisant suivant les conditions de fonctionnement par la présence d'oscillations parasites tout à fait indésirables. Il est à noter que le constructeur joint actuellement à ses feuilles de spécification une fiche de correction précisant que la résistance totale Rsérie + ESR (Résistance Série Equivalente du condensateur) doit être supérieure à 2,2 Ω pour éviter les problèmes : la valeur de 4,7 Ω prise ici conduit à une stabilité inconditionnelle des plus sympathiques.

Le circuit ainsi conçu permet de disposer d'une tension flottante parfaitement régulée de 10V entre les bornes S1 et S3, tension qui peut en fait être ajustée si besoin à une toute autre valeur avec le potentiomètre, les 10V étant ici nécessaire pour obtenir du ±5V. La suite de l'étude donnera une idée des résultats obtenus.

Le ±5 volts

Ainsi que l'on peut le voir sur le schéma, ceci se fait très simplement au moyen d'un circuit TLE 2426 de Texas Instruments, et d'un condensateur. Les TLE 2426 sont des circuits récents (dont nous avons déjà parlé) qui sont en fait des diviseurs de tension, c'est à dire que la tension entre la borne sortie (S) et la borne commune (C) est toujours égale à la moitié de la tension entre la borne d'entrée (E) et (C). Comme de plus la sortie est capable d'absorber ou de fournir du courant jusqu'à 20 mA, il est possible de l'utiliser comme une masse virtuelle. C'est ce qui est fait ici, et suivant que l'on prenne les bornes S3, S2 ou S1 comme borne de référence, on mesurera sur les autres bornes +10V (S1) et +5V (S2); +5V (S1) et -5 V (S3), ou -5V (S2) et -10V (S3). Pour faciliter les réglages de mise au point, on remarquera un cavalier (CAV) à trois positions permettant un tel choix en mettant à la masse de l'alimentation 5V les sorties S3, S2 ou S1. Il est bien évident que dans le


R (kΩ)	Is (mA)	Ps (mW)	le (mA)	Pe (mW)	ρ (%)	Vam (V)	Vs (V)
oc	0	0	2	10	0	14,3	10
10	1	10	4,4	22	45	11,3	10
8,2	1,2	12	4,9	24,5	50	11,2	10
6,8	1,5	14,7	5,4	27	54	11	10
5,6	1,8	17,9	6,1	30,5	58,6	10,9	10
4,7	2,1	21,3	6,8	34	62,6	10,7	10
3,9	2,6	25,6	7,8	39	65,8	10,6	10
3,3	3	30,3	8,7	43,5	69,7	10,5	10
2,7	3,7	37	10,2	51	72,6	10,35	10
2,2	4,5	45,5	12,1	60,5	75	10,2	10
1,8	5,6	55,6	14,3	71,5	77,7	10,1	10
1,5	6,6	65,3	16,8	84	77,8	10	9,9
1,2	8,2	80,9	20,3	101,5	79,7	9,9	9,85
1	9,8	96	23,6	118	81,4	9,85	9,7
0,82	11,7	112,4	28,2	141	79,7	9,8	9,6
0,68	13,7	127,2	32,4	162	78,5	9,5	9,3
0,18	40	288	101,5	507,5	56,8	7,4	7,2
0,047	55	143,8	145	725	20	2,8	2,6


Tableau 1 : fonctionnement du montage sans le TLE 2426.

Ve = 5V, Vs = 10V

On notéra que Vam est la tension en entrée du régulateur, et que Vs suit Vam quand Vam < 10V.

rieures à 1 k Ω ont essentiellement pour but de montrer le fonctionnement de la régulation et l'évolution des tensions de sortie (Vs) et amont du MAX 667 (Vam) qui, comme on peut le constater, se suivent à 0,2V près sans aucun problèmes d'accrochage. Signalons aussi que la tension en amont du MAX 667 est en pratique très bien filtrée par le condensateur C3 du fait de la fréquence de travail élevée, proche de 310 kHz. Le **tableau 2** a été obtenu avec le TLE 2426 en place. On remarquera immédiatement que la présence de ce composant se traduit par une augmentation assez importante de la consommation à vide qui passe de 2 à 2,6 mA. Ce phénomène s'explique très simplement par la consommation propre du TLE 2426 qui est de l'ordre de 0,18 mA sous 10V. Cette consommation est en fait prélevée sur la tension en amont du MAX 667 égale à 12,9V (voir le tableau), ce qui correspondrait sur le +5V à un courant $I = 0.18 \times 12.9/5 = 0.46$ mA. Si l'on suppose que le rendement de conversion est égal à 80 %,

cas nous intéressant (±5V isolé),ce cavalier sera supprimé après réglage des potentiomètres, afin d'obtenir une alimentation flottante.

Résultats pratiques

La figure 5 regroupe en fait les figures 2 et 4 afin d'avoir une vue générale du montage, tandis que le tableau 1 donne les résultats obtenus quand le TLE 2426 est absent. Ce tableau a été obtenu pour Ve = 5V, Vs = VS1-S3 = 10V, et on peut remarquer immédiatement que sauf à très faible courant de charge (≤1 mA), le rendement (colonne 6) est toujours supérieur ou égal à 50 %. Cela est possible grâce à la faible consommation à vide (2 mA), et pourrait être légèrement amélioré si l'on acceptait une intensité maximum en sortie plus faible. Pour ce tableau le réglage était tel que Ismax = 5,6 mA $(R = 1.8 \text{ k}\Omega)$ ce qui est naturellement bien supérieur aux besoins déclarés. Si l'on peut se contenter d'un courant plus faible (R = 4,7 k Ω et donc ls = 2,1 mA), on peut réduire la tension en amont du MAX 667, et donc gagner en rendement. Un tel cas de figure a été appliqué aux tableaux 2 et 3 qui traitent du montage complet.

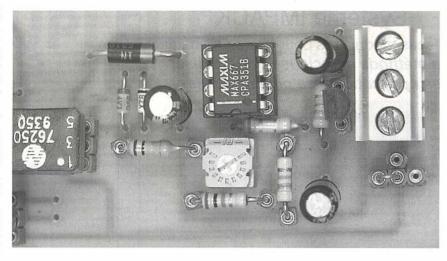
Quoiqu'il en soit, avec les réglages précédents, on remarquera que la tension de sortie est tout de même égale à 9,8V pour $R = 1 \text{ k}\Omega$, ce qui correspond à Is =9,8 mA, valeur très supérieure à celle nécessaire, et qui montre qu'il y a une certaine réserve de puissance. Les mesures faites avec les résistances infe-

R (kΩ)	I+ = I- (mA)	Pstot (mW)	le (mA)	Pe (mW)	ρ (%)	Vam (V)
oc	0	0	2,6	13	0	12,9
10	0,5	5	3,8	19	26,3	12,6
8,2	0,61	6,1	4,1	20,5	29,7	12,5
6,8	0,74	7,4	4,4	22	33	12,3
5,6	0,9	8,9	4,7	23,5	38	11,2
4,7	1,06	10,6	5,1	25,5	41,7	11
3,9	1,3	12,8	5,5	27,5	46,6	10,9
3,3	1,5	15,2	6	30	50,5	10,8
2,7	1,9	18,5	6,7	33,5	55,3	10,7
2,2	2,3	22,7	7,7	38,5	59	10,5
1,8	2,8	27,8	8,8	44	63	10,4
1,5	3,3	33,3	10	50	66,7	10,3
1,2	4,2	41,7	11,8	59	70,6	10,2
1	5	50	13,7	68,5	73	10,1

Tableau 2 : fonctionnement du montage complet. Ve = 5V, Vs1 = +5V, Vs3 = -5V. R = R + = R-

R (kΩ)	I+ = I- (mA)	Pstot (mW)	le (mA)	Pe (mW)	ρ (%)	Vam (V)
œ	0	0	2,4	12	0	12,2
10	0,5	5	3,5	17,5	• 28	12
8,2	0,61	6,1	3,8	19	32	10,9
6,8	0,74	7,4	4,1	20,5	36	10,8
5,6	0,9	8,9	4,4	22	41	10,7
4,7	1,06	10,6	4,8	24	44	10,5
3,9	1,3	12,8	5,2	26	49	10,4
3,3	1,5	15,2	5,7	28,5	53	10,3
2,7	1,9	18,5	6,3	31,5	59	10,1

Tableau 3 : montage complet avec Ismar limite à 2 mA. Mêmes conditions de test que pour le tableau 2.



cela conduit directement à un courant égal à 0,58 mA, valeur tout à fait compatible avec les 0,6 mA d'augmentation mesurée. Ce petit calcul montre l'intérêt d'utiliser des composants à très faible consommation propre, et à faire attention aux valeurs des résistances utilisées.

Le tableau 2 mérite quelques explications supplémentaires : il a été obtenu en mettant deux résistances égales entre le 0 et le +5V, et entre le 0V et le -5V, mais on peut se poser la question de savoir ce qu'il se passerait si l'on ne mettait qu'une seule résistance, ou deux résistances de valeurs différentes. La réponse est très simple : dans tous les cas, le courant débité est celui fixé par la résistance la plus faible. La figure 6 en fournit la raison: si les résistances sont égales, les courants les traversant sont égaux, et de ce fait, le courant dans la broche de sortie du TLE 2426 est nul; si ces deux résistances sont différentes (l'une est absente sur la figure 6), une partie (ou la totalité) du courant passe par le TLE 2426 ce qui ne change rien au courant débité par le MAX 667, car il est évident que dans tous les cas de figure tous les courants se bouclent via ce dernier circuit.

On peut donc en conclure que si les deux résistances sont égales les rendements sont ceux annoncés dans le tableau 2, tandis que si l'une des résistances est absente, les rendements doivent être divisés par deux, puisque seule la moitié de l'énergie du cas précédent est consommée de manière utile. Si les résistances sont de valeurs différentes, les rendements seront intermédiaires entre les deux cas.

Le tableau 3 donne les mêmes types de résultats que le tableau 2, mais après ajustement de la tension en amont du MAX 667 pour que le courant débité maximum possible soit de 2 mA, ce qui conduit, ainsi que l'on peut le constater, à une amélioration du rendement de l'ordre de 3%. Cet

accroissement n'est pas très spectaculaire, mais peut être intéressant; de toutes façons, toute amélioration ultérieure de ce même rendement devra se faire en jouant essentiellement sur la consommation propre du régulateur, de l'oscillateur (0,6 mA ici), et sur le type de transformateur utilisé qui a été choisi parmi les modèles industriels dont l'approvisionnement peut se faire sans problèmes.

Pour terminer cette étude, signalons que le montage peut être modifié de façon simple pour fournir ou fonctionner avec des tensions différentes de celles choisies. Il faut cependant garder à l'esprit que l'utilisation d'une tension d'entrée supérieure à 5V (12V ou 15V par exemple) risque de nécessiter l'utilisation d'un transformateur ayant une self primaire plus importante, et/ou des rapports de transformations différents, composant qui peut être délicat à trouver. La figure 7 donne l'implantation des composants du circuit imprimé de la figure 8 pour lequel on peut remarquer qu'il n'y a eu aucune tentative de miniaturisation de l'ensemble, mais que de toute évidence, on peut en réduire les dimensions de façon très importante.

Conclusion

L'étude qui vient d'être décrite n'a pas d'autre but que d'essayer d'aider des personnes ayant rencontré des problèmes semblables : si la consommation à vide des convertisseurs CC-CC industriels n'est pas rédhibitoire, il est évident qu'il vaut mieux acheter un modèle prêt à l'emploi, mais si ce problème se pose avec acuité, il pourrait être intéressant, voire indispensable d'envisager une solution sur mesure.

G.GIROLAMI

NOMENCLATURE

Résistances :

R1: 100 Ω

R2: 1,2 kΩ R3:1 MΩ

R4: 100 kΩ

R5: 680 kΩ

R6: 4,7 Ω R7: 47 kΩ

Pot1: 1 kΩ

Pot2: 20 kΩ

Condensateurs :

C1: 390 pF

C2: 22 µF

C3: 22 µF C4:10 µF

C5: 10 µF

Semi-conducteurs:

D1:1N4148

D2: 1N4148

D3: 1N5819 (Schottky)

D4 : zener BZX 55C-4,7V D5 : zener BZX 55C-12V

T1: BS 170 (MOS-FET)

Circuits intégrés :

IC1: MAX 667 (MAXIM)

IC2: TLE 2426 (TI)

IC3:74C14

Transformateur:

Référence 76250 Newport. Disponible chez Radiospares

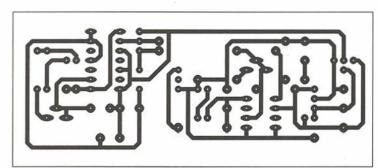


Figure 7: implantation des composants.

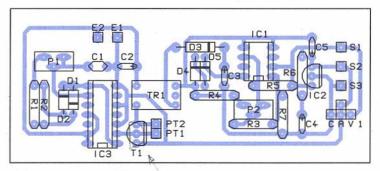


Figure 8 : circuit imprimé.

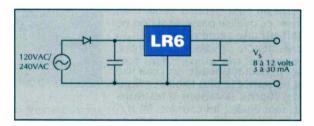
Système IMPACK

Interfaces modulaires pour Mioro Ordinateur. La méthode astucieuse pour réaliser les applications les plus originales.

IMPACK se compose d'une carte support, (en slot, en liaison série, ou parallèle.) et de plus de 30 modules, qui s'enfichent sur les cartes supports.

Modules entrées/sorties logiques et analogiques. asservissement de moteurs courant-continu et pas à pas, divers...

Exemple: modules relais + commande moteur + mesures analogiques + Afficheurs +...


> livié avec notice en trançais et exemples de programme. Catalogue sur demande

SIDENA 302 avenue de Neuville 78950 GAMBAIS Tél: (1) 34 87 19 05 Fax: (1) 34 87 19 06

Supertex

Une alimentation AC/DC régulée à

Régulation 0,1 mV/V / 50 mV/mA Réjection de bruit/entrée ≥ 60 dB

par 50,000 pièces

ZA de COURTABŒUF - BP 79 **Téléphone : (1) 69 07 12 11** 91943 LES ULIS CEDEX Télécopie : (1) 69 07 67 12

UNAOHM

MESUREUR DE CHAMP PANORAMIQUE TERRESTRE ET SATELLITE

MCP 915 SAT

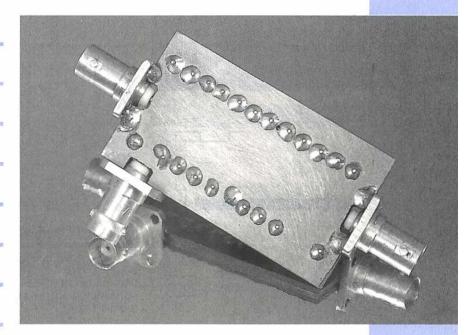
PROFITEZ DES TROIS PLUS

PLUS DE POSSIBILITÉS

- De 46 à 2 100 MHz sans trous.
- Mesures adaptées au standard L.
- Analyse de spectre instantanée.
- Filtres d'analyse 100 KHz, 1 MHz, 9 MHz.
- Dynamique d'écran 30 dB.
- Echelle linéaire en dB.

PLUS ÉCONOMIQUE Un investissement plus léger encore plus rentable.

PLUS LÉGER 50% plus léger qu'un modèle habituel



339 H Route de Valparc - 74330 POISY - Tél. 50 22 31 42 - Fax 50 22 09 78

UN COUPLEUR DIRECTIF

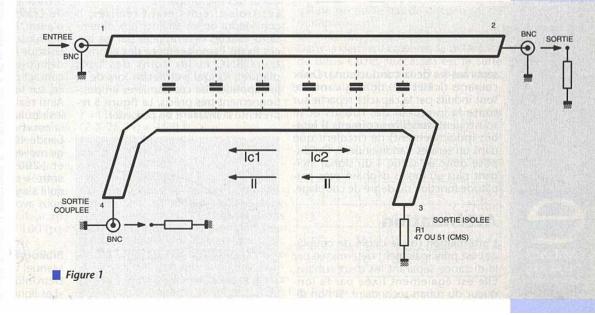
Le petit montage proposé ici, bien que de fabrication très simple, se révèlera d'une grande utilité pour les lecteurs que la pratique des hautes fréquences passionne. Nous n'aborderons que superficiellement le principe de fonctionnement, et passerons rapidement à la réalisation pratique.

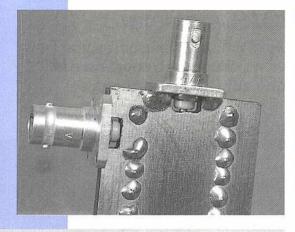
Les lecteurs intéressés pourront se reporter à l'article de M. ALAIN RIVAT

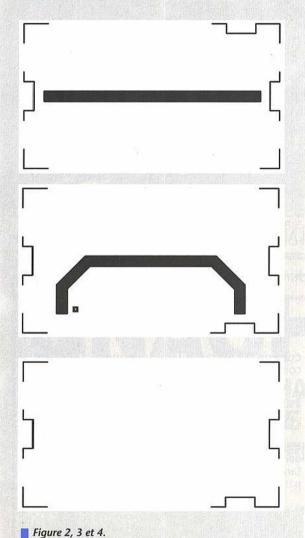
consacré à la simulation des couplages magnétiques, publié dans le

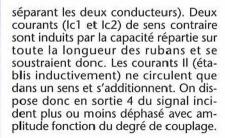
présent numéro.

Un coupleur directif peut être destiné à de nombreuses utilisations, dont les principales sont la mesure du taux d'ondes stationnaires, le prélèvement d'une partie du signal à des fins de contrôles ou de mesures, ou l'alimentation d'amplificateurs.

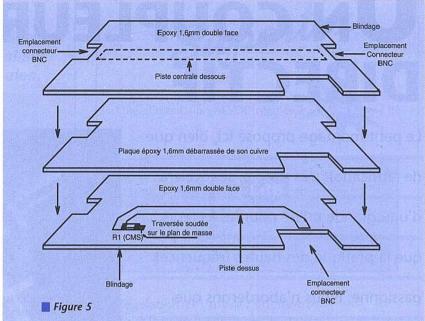

Donc, comme nous venons de le voir, un coupleur directif est utilisé pour prélever une certaine partie du signal qui lui est injecté sans désadaptation. Sui-


vant ses caractéristiques, le signal aura une amplitude plus ou moins grande qui variera avec le degré de couplage. En se reportant à la figure 1, on s'aperçoit du principe utilisé, qui met en œuvre des lignes à rubans ou microrubans. Ces lignes sont réalisées sur un circuit imprimé en double face, dont l'une sert de plan de masse et de blindage. Il existe deux principales façons de placer ces lignes sur le circuit : elles peuvent être côte à côte sur un même plan ou être superposées et donc sur deux platines différentes écartées par un isolant, il s'agit dans ce cas de striplines. C'est l'épaisseur et la nature de l'isolant ou l'espace qui sépare les deux lignes placées sur un même plan qui détermine le degré de couplage. Un coupleur possède des caractéristiques mécaniques et électriques bien précises: la largeur du ruban ainsi que son épaisseur, celle du diélectrique, la


surface du plan de masse, la nature du matériau utilisé pour le ruban et celle du support isolant (permittivité). Le plus souvent, c'est le verre époxy (FR4 ou G10) ou le téflon qui sont utilisés comme substrat avec du cuivre comme conducteur.


Fonctionnement du coupleur

Les lignes sont couplées de deux façons différentes : par mutuelle inductance (par la longueur des lignes) et par couplage capacitif (par la distance



Atténuation

L'atténuation (ou le degré de couplage) est principalement déterminée par la distance séparant les deux rubans. Elle est également fixée par la lonqueur du ruban secondaire. Si l'on di-

minue cette dernière, l'atténuation sera augmentée de la même façon que si l'on éloignait la ligne secondaire de la ligne principale. C'est cette atténuation qui détermine le rapport entre la puissance d'entrée et celle de sortie (points 1 et 4).

Le degré d'efficacité directionnel

Il est fonction de la puissance disponible au point 3 du coupleur. En effet, si les courants Ic1 et Ic2 étaient de même amplitude, ils s'annuleraient donc et l'on ne devrait obtenir aucun signal en sortie 3. La pratique est différente et cette dernière présente toujours un signal plus ou moins important.

La réalisation pratique

Il conviendra de se reporter aux figures 2, 3 et 4 représentant les circuits imprimés de cette réalisation. Ils devront être réalisés avec soin afin de respecter les dimensions (largeur et longueur des microrubans).

Les trois circuits étant réalisés, il conviendra de les amener aux dimensions exactes déterminées par les tracés fixant l'emplacement des connecteurs BNC et les coins des trois plaques, ce qui permettra lors de la juxtaposition de ces dernières un positionnement très précis. La figure 5 représente la manière de procéder.

Suivant le type de connecteurs BNC utilisés, il sera peut être nécessaire d'augmenter les dimensions des échancrures qui leur sont réservées. Lorsque ces connecteurs auront été soudés, il conviendra de limer les soudures du conducteur central afin qu'elles ne dépassent pas, en épaisseur, de la plaque centrale. Les corps des BNC seront soudés sur la surface de cuivre assurant le plan de masse et le blindage. Afin de connecter la résistance R1 à la masse, une traversée est prévue. Cette résistance sera obligatoirement un modèle CMS 50 Ω. A l'aplomb de sa position sur le circuit imprimé, la plaque centrale sera percée pour ménager un emplacement lorsque les trois circuits seront soudés ensemble.

Une fois toutes ces opérations achevées, on positionnera les trois plaques telles qu'elles le seront de manière définitive, en les fixant dans un petit étau. On percera ensuite le tout sur deux lignes à environ 8 millimètres des bords et à 5 millimètres d'intervalle sur toute la longueur des trois plaques. Il faudra bien sûr veiller à ne pas percer le conducteur secondaire. Ces trous serviront à assurer, par la mise en place de traversées soudées de part et d'autre, le contact entre les deux plans de masse.

Lorsque l'on passera à la mise en place définitive, il faudra veiller à assurer un contact parfait entre les trois circuits et ce, sur toute leur longueur.

Ainsi réalisé, le coupleur directif donne les résultats de mesure représentés sur la courbe tracée en figure 6. Dans la bande 400MHz à 1300MHz le couplage moyen est de -12dB. Entre 600MHz et 1200MHz, l'écart reste compris entre + et - 1,5dB. C'est logique puisqu'il s'agit d'un filtre passe-bande que nous avons centré sur 900 MHz ($I = \frac{\lambda}{4}$).

P. OGUIC

Bibliographie:

Manuel VHF-UHF de K.WEINER Elctronique Applications : J. DE NEEF «Les lignes à microrubans»

RACINES CARRÉES ET DISTANCES SUR µC

La fonction racine carrée est une des fonctions fondamentales et est

nécessaire dans de nombreux calculs.

On l'utilisera par exemple pour calculer ArcSin(x) (1) ou ArcCos(x) (2) à

partir de la fonction ArcTan(x) déjà décrite dans ces colonnes, pour

calculer des distances euclidiennes ou dans tout autre calcul.

L'algorithme le plus connu de calcul de racine carré est la méthode de

NEWTON qui peut se résumer de la manière suivante :

 $r = (x + r^2)/(2.r)$

```
typedef union{
                                                /* long_int est soit */
/* un long (32 bits) */
       unsigned long
                           i[2];
       unsigned int
                                                /* soit deux int de 16 bits */
       }long_int;
#define MSB 1
                                                /* dépend de la machine */
/* calcul de racine carrée d'une valeur entière */
unsigned char square(unsigned int value)
                           valeur;
                                                /* valeur entrée */
       long_int
       unsigned int
                           résultat;
                                                /* résultat intermédiaire */
                           temporaire;
       unsigned int
                                                /* compteur de boucle */
       unsigned int
                           loop;
       valeur.l = (unsigned long)value;
                                                /* initialise la valeur */
       résultat = 0;
                                                /* et le résultat */
       for(loop = 0; loop < 8; loop++){
         résultat <<= 1;
                                                /* pousse le résultat précédant */
         valeur.l <<= 2;
                                                /* prend les deux bits MSB */
         temporaire = (résultat*2) + 1;
if(valeur.i[MSB] >=temporaire){
                                                /* teste la racine carrée */
           valeur.i[MSB] -=temporaire;
                                                /* recadre le MSB */
                                                /* racine carrée = 1 */
           résultat++;
       return résultat;
```

tions pour éviter d'osciller indéfiniment autour de la solution si la précision souhaitée est importante.

De même un bon choix de la racine de départ diminuera sensiblement le nombre d'itérations à effectuer. On pourra aussi réécrire l'équation :

r = (r + x / r) / 2 pour limiter les débordements dans les calculs intermédiaires.

Cet algorithme universellement employé pour les calculs en flottant n'est pas optimum pour des calculs entiers. Il oblige à fixer le nombre d'itérations pour éviter l'oscillation du résultat. De plus sur les processeurs qui ne disposent pas de division câblée suffisante, (ce qui est le cas des microprocesseurs 80C5X, 68HC11 et 68HC05), cet algorithme est inutilement lent.

Il existe un autre algorithme très simple pour extraire les racines carrées qui ne nécessite pas de division (ni de multiplication).

Considérons le tableau 1.

Dans la dernière colonne, la différence de deux carrés successifs est la suite des nombres impairs. On peut donc écrire l'algorithme suivant :

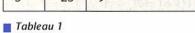
L'idée est d'essayer une racine (r) de la valeur dont on désire extraire la racine (x), puis de réintroduire la nouvelle valeur de r trouvée. En réitérant l'opération plusieurs fois, la valeur r convergera rapidement vers la valeur désirée. Par exemple, calculons la racine carrée de 100 :

x = 100, on prend comme valeur approchée de la racine la valeur 100 (pas une très bonne approximation) r = (100 + (100 X 100)) / (2 X 100)

= 50,50 r = (100 + (50,50 X 50,50)) / (2 X 50,50) = 26,24

}

r = (100 + (26,24 X 26,24)) / (2 X 26,24) = 15,03


Listing 2 : la version C

r = ... = 10,84 r = ... = 10,03

r = ... = 10,00001 r = ... = 10,00000

Chaque nouveau calcul nous rapproche de la solution on pourra donc théoriquement arrêter les itérations quand on obtiendra la précision souhaitée. En fait si on effectue les calculs en flottant, les erreurs de troncature sur les calculs flottants limiteront rapidement la précision du résultat. Il sera prudent de limiter le nombre d'itéra-

n	n²	différence
0	0	
1	1	1
2	4	3
3	9	5
4	16	n7 - (32, 23) 394 - (3
5	25	9

r = 1;do{ x = x - r; r = r + 2;while(x >= 0); r = (r / 2) - 1;

C'est vraisemblablement l'algorithme le plus simple de calcul de racine car-

Petit problème : le nombre d'itérations est égal à la valeur de la racine carrée. Fort heureusement, on peut limiter les itérations si on se limite à des calculs de petites racines carrées. Quand on réalise une racine carrée à la main, on groupe les chiffres deux par deux, et on calcule la racine carrée deux chiffres par deux chiffres. De même, en base deux, on pourra grouper les bits deux par deux et chercher la racine carrée de ces deux bits (0 ou 1), exactement comme dans la méthode manuelle. Le nombre d'itérations n'est donc plus que de un, en revanche, il faudra effectuer n calculs de racines carrées, n étant le nombre de bits du résultat. Le listing 1 réalise le calcul de la racine carrée d'une valeur 32 bits contenue dans ACCU32 et restitue le résultat dans R6:R7 en assembleur 80C31. La durée d'exécution est au maximum de 1,5 millisecondes pour un microprocesseur cadencé à 12 MHz. Le listing 2 est une implémentation du même algorithme en langage C.

Le calcul de racine carrée est souvent utilisé pour évaluer des distances. La distance de deux points de coordon-

nées (x_1, y_1) et (x_2, y_2) est : d = racine $(X^2 + Y^2)$ avec $X = x_1 - x_2$ et

 $Y = y_1 - y_2$ Dans les cas où il n'est pas nécessaire

de faire un calcul avec une grande précision, on peut utiliser les approximations (4) et (5) pour évaluer la distance. Max(x, y) et Min(x, y) sont respectivement des fonctions qui renvoient les valeurs maximum et minimum de x et de y. |x| est la valeur absolue de x.

L'approximation (4) donne un résultat avec une erreur minimum de 0 et une erreur maximum de 11,76 % soit une

erreur inférieure à 1 dB.

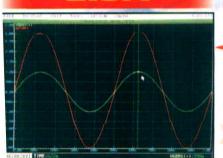
Si cette approximation est insuffisante, on utilisera la formule (5). L'erreur minimum est ici de -2,77 % et l'erreur maximum de 0,78 %. Ces deux approximations pourront être très facilement programmées en n'utilisant que des additions, soustractions et décalages.

```
(1): ArcS in (x) = ArcTan \left(\frac{x}{\sqrt{1-x^2}}\right)
(2): ArcCos (x) = ArcTan (\frac{\sqrt{1-x^2}}{})
(3): Distance (X, Y) = \int X^2 + Y^2
(4): Distance (X,Y) \approx Max(|X|,|Y|) + \frac{1}{2}Min(|X|,|Y|)
(5): Distance (X,Y) \approx Max(IXI, \frac{7}{8}|XI + \frac{1}{2}|YI, \frac{1}{2}|XI + \frac{7}{8}|YI, |YI|)
```

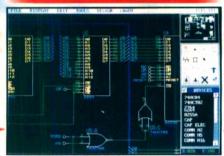
```
RSEG
                   ?DT?_square?SQUARE
                  ; registre 32 bits
?PR?_square?SQUARE
ACCU32: DS
        RSEC
mulacc: MOV
                                       ; multiplie R1:R2:R3:ACCU32 par 2
                   A.ACCU32+3
        ADD
                   A,ACCU32+3
                                       ; équivalent à un décalage à gauche
                   ACCU32+3,A
        MOV
        MOV
                   A,ACCU32+2
        ADDC
                   A,ACCU32+2
                   ACCU32+2,A
        MOV
                   A,ACCU32+1
        MOV
        ADDC
                   A.ACCU32+1
                   ACCU32+1,A
        MOV
        MOV
                   A,ACCU32+0
        ADDC
                   A,ACCU32+0
        MOV
                   ACCU32+0,A
                                       ; décale les MSB de ACCU32
        MOV
                   A,R3
        ADDC
                                       ; dans R1:R2:R3
                   A,R3
        MOV
                   R3,A
        MOV
                   A,R2
        ADDC
                   A,R2
        MOV
                   R2,A
        MOV
                   A,R1
                                       ; en fait on n'utilise que
        ADDC
                   A,R1
                                       ; les deux bits LSB de R1
        MOV
  square calcule la racine carrée de ACCU32 et place le résultat dans R6:R7
 R4:R5 est un intermediaire de calcul qui contient ((R6:R7) * 2) + 1
 R1:R2:R3 accumule les bits décales de ACCU32
 R0 est le compteur de boucle
 à la fin de l'exécution, ACCU32 = 0
 L'algorithme est très proche de l'algorithme de division mis a part que
 dans la recherche de la racine carrée, le «numerateur» est décalé par blocs
 de deux bits.
dans le pire cas, l'exécution dure 1494 cycles
square:
        CLR
        MOV
                   R6,A
                                       ; résultat R6:R7
                  R7,A
A,ACCU32+3
        MOV
        MOV
                                       : teste si ACCU32 = 0
        ORL
                   A,ACCU32+2
                   A,ACCU32+1
        ORL
        ORL
                   A,ACCU32+0
                                       ; ACCU32 = 0, sort avec 0
                   squar3
        CLR
                  R1,A
R2,A
R3,A
        MOV
                                       : accumulateur de bits a 0
        MOV
        MOV
                  RO,#16
                                       ; résultat sur 16 bits
        MOV
; boucle de calcul
squar0: MOV
                 effectuée 16 fois
                                       ; résultat = résultat * 2
                   A,R7
                  A,R7
R7,A
        ADD
        MOV
        MOV
                   A,R6
        ADDC
                   A,R6
        MOV
                   R6,A
        CALL
                   mulacc
                                       ; décale les deux prochains bits
        CALL
                   mulacc
                                        dont on veut extraire la racine carrée
        MOV
                   A,R7
                                       ; temp = (résultat * 2) + 1
        ADD
                   A,R7
        MOV
                   R4,A
        MOV
                   A,R6
        ADDC
                   A,R6
        MOV
                   R5,A
        MOV
                   A,R4
        ADD
                   A,#1
        XCH
                   A,R5
        ADDC
                   A,#0
        MOV
                   R4,A
                                       ; ici C = 0
; teste si R1:R2:R3
                  >= R4:R5 (partie haute >= temp)
        MOV
                   A,R1
                                       ; si msb non nul
        JNZ
                                       ; R1:R2:R3 > R4:R5
                   squar1
        MOV
                   A,R3
        SUBB
                   A,R5
        MOV
                   A,R2
        SUBB
                   A,R4
                  squar2
                                       ; R4:R5 > R1:R2:R3
; R1:R2:R3 >= R4:R5, calcule R1:R2:R3 = R1:R2:R3 - R4:R5
squar1: MOV
                  A,R3
                                       ; partie haute = partie haute - temp
        SUBB
                   A,R5
        MOV
                   R3,A
                   A,R2
        MOV
        SUBB
                   A,R4
                   R2,A
        MOV
        MOV
                  A,R1
        SUBB
                   A,#0
                   R1,A
        MOV
        MOV
                   A,R7
                                       ; résultat = résultat + 1
        ADD
        MOV
                   R7,A
                   A,R6
        MOV
                   A,#0
        ADDC
        MOV
                   R6,A
squar2: DJNZ
                   RO, squarO
```

SAISIR

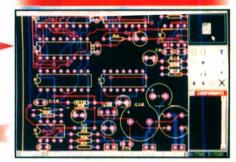
votre schéma


SIMULER

son fonctionnement


AUTOROUTER

son circuit-imprimé


LISA

Simulation Analogique, Digital et Mixte ISIS III

Saisie de schéma Simple et Multifeuille ARES III

Routage automatique Simple, Doublelace et Multinauche

15.990 F[#]

PROTEUS: Trois logiciels en Un!

PROTEUS est actuellement le système intégré le moins cher et le plus performant des outils graphiques sur PC, conçu pour une utilisation hautement professionnelle.

- CAO sur PC (AT/386/486).
- Fait la simulation "on line", sans guitter le schéma.
- Permet la simulation analogique, numérique et mixte.
- Traite des grands schémas multifeuilles.
- Possibilité d'exporter vers la PAO/TT.
- Système modulable, chaque logiciel pouvant être acheté séparément.
- PROTEUS est la solution évolutive ouverte vers l'avenir.

Disquette de démonstration au prix de 50 Frs sur demande (offerte gracieusement aux sociétés et aux enseignants)

Alliez la puissance à la simplicité avec PROTEUS

Multipower

22, rue Emile BAUDOT 91120 - PALAISEAU Tél: 16 (1) 69 30 13 79 Fax: 16 (1) 69 20 60 41 DAVIG

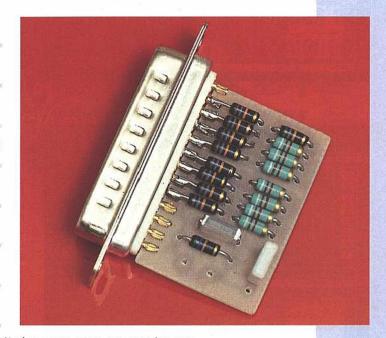
AL 936 mode separe 0-30V / 0-2,5A Mode parallèle 0-30V/0-5A Mode séparé 0-30V / 0-2,5A Mode symétrique ±0-30V/0-2,5A Mode fixe 5V/2,5A Mode série 0-60V/0-2,5A Mode réglable 1-15V/1A Mode attente connexion ou déconnexion des sorties Maître et Esclave Boutons de court-circuit des sorties Maître et Esclave L'alimentation AL 936 est en vente chez votre fournisseur de composants électroniques, et les 59 Avenue des Romains spécialistes en 74000 ANNECY appareils de mesure COMPAREZ ACTIVEZ LES FONCTIONS REUSSISSEZ

LPTDAC: **CNA «AUDIO» POUR MICRO-ORDINATEUR**

Puisque des convertisseurs analogiques-

numériques arrivent à prendre place dans de

simples capots de DB25, pourquoi ne pas


songer à faire de même avec des convertisseurs

numériques-analogiques?

Branché sur le port parallèle d'un micro-

ordinateur, notre petit montage ultra-simple se

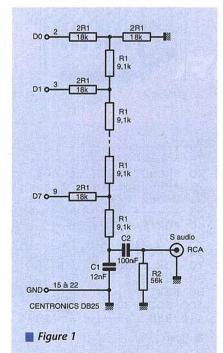
prêtera notamment fort bien à la lecture de

fichiers «.WAV» ou à la restitution de sons digitalisés avec, par exemple, un

ADC10 Pico Technology. Mais on pourrait tout aussi bien s'en servir pour

synthétiser des formes d'ondes variées, moyennant un peu de programmation

dans un langage suffisamment rapide.


Un port parallèle à 8 bits

Le port d'imprimante parallèle «Centronics» dont sont munis pratiquement tous les micro-ordinateurs (à commencer par les compatibles PC) est spécialement conçu pour transmettre des mots de huit bits d'un seul tenant.

Point ne sera donc besoin de s'embarrasser d'un système de communication en série comme lorsqu'il s'agit de faire entrer des octets par cette prise «à tout faire».

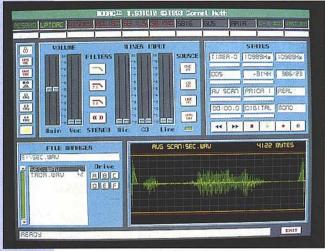
Même si le protocole Centronics prévoit tout un mécanisme de synchronisation par les lignes /STROBE, BUSY, et /ACK, il est généralement possible de transmettre des octets «en aveugle» mais bien plus rapidement, en écrivant tout simplement sur le port d'entréesortie correspondant.

Sur un compatible PC, l'adresse à utiliser sera à de rares exceptions près 378h (888 en décimal) pour LPT1: et 278h (632 en décimal) pour LPT2 :

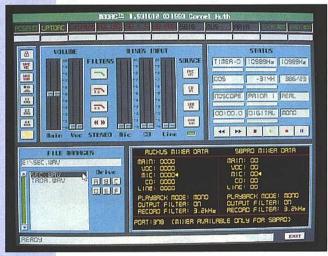
tandis que sur d'autres matériels l'examen de la documentation technique permettra souvent de déterminer cet

indispensable paramètre.

La question peut donc être considérée comme réglée d'un point de vue logiciel, que l'on écrive soi-même un programme «sur mesures» ou que l'on fasse appel à un utilitaire existant.


Reste donc à extraire un signal analogique de la suite d'octets arrivant sur la prise Centronics.

Un simple réseau


La partie essentielle du schéma de la figure 1 est un réseau de résistances dit «R-2R», connu pour sa propriété de produire une tension proportionnelle au code binaire appliqué sur ses en-

Dans les convertisseurs numériquesanalogiques de précision, les entrées du réseau R-2R sont toujours attaquées par des niveaux de tension parfaitement définis, les entrées binaires ac-

- L'oscilloscope intégré à MODAC.
- MODAC est offert en téléchargement sur notre serveur.

tionnant seulement des commutateurs. On obtient ainsi exactement 0 V en sortie pour 00h en entrée, et par exemple 5 V pour FFh, selon le gain de l'amplificateur qui suit presque toujours le réseau de résistances.

En ce qui nous concerne, s'agissant essentiellement d'applications audio, seule la forme de la composante alternative nous intéresse: la composante continue étant éliminée par le condensateur de liaison de 0,1 µF et l'amplitude pouvant toujours être corrigée par l'amplificateur de reproduction, nous pouvons fort bien nous permettre par exemple 1 V pour 00h et 2,5 V pour FFh.

Ces libertés prises avec les niveaux continus se traduisent par une forte simplification du schéma, puisque le réseau R-2R est tout simplement attaqué en direct par les huit lignes de données du port Centronics!

Un avantage supplémentaire de cette configuration est que le montage ne nécessite aucune alimentation autre que la tension présente sur les lignes de données portées au niveau haut.

de données portées au niveau haut. Branché sur une entrée «ligne» d'amplificateur, ce montage délivrera un niveau comparable à celui d'une source audio courante, et pour peu que son impédance d'entrée soit de l'ordre de $47~\mathrm{k}\Omega$ ou davantage, la linéarité de la conversion pourra être considérée comme suffisante pour du son échantillonné sur $8~\mathrm{bits}$.

REALISATION PRATIQUE

Le petit circuit imprimé de la figure 2 a été dessiné de façon à pouvoir s'introduire à frottement dur entre les deux rangées de contacts d'une fiche DB25 mâle à souder.

Les huit contacts de masse correspondant aux huit lignes de données (autrement dit les points 15 à 22 de la DB25) seront soudés sur la piste large longeant le bord de la carte, assurant à la fois la liaison électrique et la rigidité mécanique.

Huit résistances de $18 \text{ k}\Omega$ 1/4 W seront ensuite soudées d'un côté aux pastilles du circuit imprimé, et de l'autre aux lignes de données D0 à D7, autrement dit aux points 2 à 9 de la DB25.

Le câblage selon la figure 3 des composants restants ne soulève aucune difficulté, dans la mesure du moins où leurs dimensions seront choisies suffisamment petites: il ne serait en effet d'aucune utilité d'employer des condensateurs 400 V, 63 V suffisant déjà amplement! Les deux pastilles de sortie pourront être utilisées à la discrétion de chacun, le plus indiqué nous sem-

blant être le raccordement direct d'un cordon blindé terminé par une fiche RCA mâle, ou par une fiche DIN selon l'équipement de l'amplificateur disponible.

Mise en œuvre

Rendons à César ce qui est à César : l'appellation «LPTDAC» de ce petit montage nous a été inspirée par nos essais d'un «shareware» américain (MODAC) déniché parmi les 600 méga-octets d'un CD-ROM (DPTool Club si nos souvenirs sont bons).

Même dans sa version limitée (celle que nous offrons en téléchargement sous le nom de MODAC.EXE), ce logiciel est capable de lire les fichiers sonores «.WAV» soit sur le haut-parleur du PC avec naturellement une qualité très limitée, soit sur un «LPTDAC» branché sur LPT1 : (h378).

L'excellente qualité ainsi disponible pourra être mise à profit pour écouter soit des fichiers «.WAV» de provenances diverses (les CD-ROM de shareware en regorgent), soit des sons digitalisés avec un ADC10 PICO TECHNOLOGY et nos logiciels ADC-

SON.PAS et ROMTOWAV.BAS (voir ERP N°561).

Malgré des possibilités évidemment bien moindres, cette approche constitue une alternative particulièrement économique à l'utilisation de cartes «son» genre SOUNDBLASTER ou similaires sans prétendre aux mêmes per-

formances.

Mais là ne s'arrêtent naturellement pas les possibilités de ce montage: le très simple programme de démonstration LPTDAC.BAS listé à la **figure 4** montre le principe de la génération logicielle de formes d'onde a priori quelconques, dans les limites de fréquence autorisées par l'ordinateur et le langage de programmation employé.

En Turbo-Pascal, C, ou même assembleur, on pourrait espérer produire des signaux de formes variées à des fréquences pouvant atteindre plusieurs kilohertz. A vous de jouer!

Patrick GUEULLE

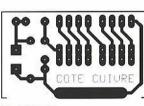
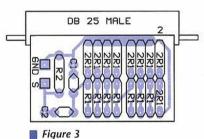
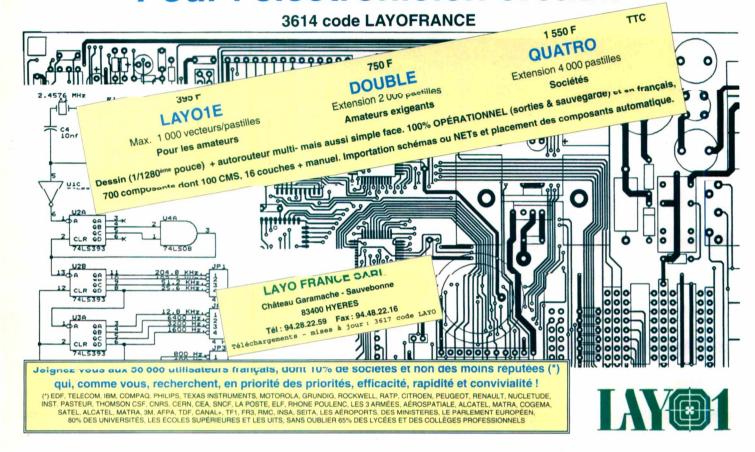



Figure 2


10 REM LPTDAC. BAS
15
20 S=&H378:REM si LPT1:
25 REM supprimer ligne 20 ou 30 selon port utilisé
30 S=&H278:REM si LPT2:
35
40 FOR F=0 TO 255
50 OUT S,F
60 NEXT F
70 FOR F=254 TO 1 STEP -1
80 OUT S, F
90 NEXT F
100 GOTO 30
110 REM (c) 1994 Patrick GUEULLE
■ Figure

Encore plus près de vous

information technique, autres logiciels et mises à jour :

Pour l'électronicien créatif.

ScopeMeter® Série II, la révolution permanente.

Lorsque Fluke a lancé sa première série de ScopeMeters, c'était déjà une révolution. En France, des milliers de professionnels l'ont choisi et il est devenu pour eux un outil aussi indispensable qu'apprècié.

Nous les remercions pour la confiance qu'ils nous ont témoignée. Aujourd'hui, Fluke a choisi d'étendre le champ d'application du ScopeMeter en pensant aux utilisateurs certes moins familiers de ce genre d'outils, mais tout aussi exigeants.

Grâce à sa rapidité, sa simplicité et son efficacité, le ScopeMeter® Série II améliore encore ses performances et permet d'effectuer davantage d'interventions sur site avec un minimum de manipulations.

Spécialiste ou néophyte, ScopeMeter® Série II vous offre toujours plus.

Pour plus ample information, démonstration ou documentation. contactez:

Fluke France

37, rue Voltaire B.P. 112 **93700 DRANCY**

Tél.: (1) 48.96.63.63 Fax: (1) 48.96.63.60

=LUKE®

L'ANALYSEUR DE SPECTRE RF U4941, ADVANTEST

Advantest est un

fabricant japonais

renommé, spécialisé

depuis sa création dans

l'analyse spectrale, tant

en BF avec une offre

très large d'analyseurs

FFT, qu'en HF avec une offre encore plus riche d'analyseurs de réseaux,

d'analyseurs vectoriels, d'analyseurs de spectre RF, hyper et optiques, et de

générateurs synthétisés. La distribution des produits Advantest en Europe est

désormais (depuis 93) assurée par Rohde et Schwarz, leader incontesté dans la

métrologie haute fréquence. L'offre conjointe des deux sociétés est une des plus

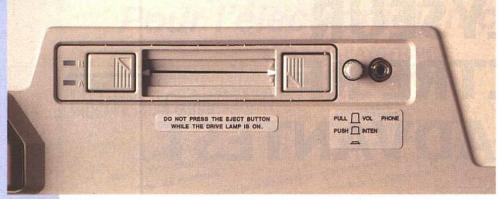
complètes dans le domaine et l'U4941, analyseur 2,2 GHz innovant, en

constitue l'entrée de gamme.

L'encombrement de plus en plus important du spectre hertzien associé à l'émergence de nouveaux procédés de modulation et de nouvelles exigences sur les niveaux de rayonnement émis et admis par les ensembles électroniques - compatibilité électromagnétique - font de l'analyseur de spectre RF un matériel qui déviendra de plus en plus commun tant dans les phases de développement et test d'un produit, qu'en contrôle et maintenance sur le terrain d'appareils, de réseaux, voire enfin pour le calibrage et l'alignement s'agissant de radiocommunications ou de réception satellitaire.

Un appareil d'usage polyvalent impose le respect d'un grand nombre de critères d'un cahier des charges exhaustif que seuls des fabricants très expérimentés dans le domaine de l'analyse spectrale peuvent et savent satisfaire.

C'est aussi bien le cas du japonais Advantest que du grand spécialiste européen Rohde et Schwarz qui assure avec la distribution, la maintenance et le support technique des produits Advantest sur le sol français.


L'U4941 couvre une bande supérieure à 2 GHz, celle où il y a le plus «d'activités», ne pèse que 6,5 kg ce qui en fait l'appareil le plus léger dans sa catégorie, dispose d'un écran LCD couleur TFT 6 pouces inclinable pour un excellent confort de lecture et un rerayonnement minimum. En outre, il peut s'alimenter aussi bien directement en continu - 10 à 16 V que par des blocs amovibles de conversion secteur 110 V et 220 V, ou de batteries, emboitables sur la face arrière.

La sauvegarde et la recopie de fichiers spectres et configurations peut s'effectuer sur une ou deux cartes PCMCIA.2 au format DOS de 64 à 256 Koctets, ce qui permet de répondre plus facilement à la diversité des besoins qu'une grande mémoire de données sauvegardées interne. Par ailleurs cela permet de travailler aussi sur un PC muni du lecteur ad-hoc.

En standard l'U4941 dispose d'interfaces GPIB (IEEE 488) et RS232C, d'une entrée de référence 10 MHz, d'une sortie vidéo composite 1 Vpp/75 Ω NTSC ou PAL sur BNC, d'entrées et TTL de commande de balayage. Un préamplificateur commutable en tête permet d'accroître la dynamique de mesure qui s'étend dès lors de - 132 dBm à + 20 dBm dans les conditions les plus appropriées au plan bruit (RBW = 1 kHz, VBW = 10 Hz).

La dynamique d'affichage de 100 dB est la meilleure du marché dans cette gamme. Comme on le constate, ces

Un des accès cartes PCMCIA.2. Il y a un lecteur devant et un derrière, sur le dessus.

caractéristiques générales confèrent à l'appareil l'universalité d'emploi que nous évoquions au début pour ce domaine fréquentiel.

La plupart des mesures ou contrôles courants s'effectuent très simplement par des touches à accès direct, l'entrée dans les menus n'étant nécessaire que pour des particularités - il y en a beaucoup, certes, mais l'U4941 y répond. Certaines mesures ou procédures «standards» sont «préprogrammées». On y accède grâce aux touches MEAS 1 et 2 et shift + EMC.

Il s'agit des mesures normalisées : distorsion d'intermodulation du 3° ordre, taux de modulation AM, taux d'occupation spectrale (OBW: Occupied Bandwidth), puissance résiduelle du

sables (fait unique sur ce genre d'appareil). L'U4941 dispose par ailleurs d'un auto set-up accessible via la touche preset à tout moment, et l'utilisateur peut définir ses propres fonctions via l'entrée dans un menu par l'appui en séquence des touches Shift + User define.

Parmi les autres très nombreuses possibilités de l'appareil, mentionnons la totale redéfinition des couleurs, par fonctionnalités affichées, et cela par dosage du pourcentage R, V, B (!). Les mesures en relatif, avec offset sur le niveau de référence et la fréquence, le travail complet avec les marqueurs, la possibilité de créer une fenêtre de travail à n'importe quel endroit de l'excursion totale en fréquence, un peu à l'instar

de la double base temps d'un oscilloscope, sont des atouts de travail indéniables. On peut aussi affecter des labels via le pavé alphanumérique aux courbes à sauvegarder, travailler en mode go/no-go, gabarit, recopier les écrans via imprimante vidéo, par RS 232, ou par l'interface GPIB (mode accédé avec l'adresse via les touches LCL et shift + LCL).

Possibilité intéressante en développement ou en contrôle et test EMC, l'utilisateur peut entrer des tables de corrections (amplitude-fréquence) : de filtres, d'amplis, de coupleurs ou d'antennes connectés entre, ou directement sur, l'analyseur et l'ensemble à tester

L'entrée des paramètres sur une fonction choisie: SPAN ou dispersion de fréquence, fréquences de départ et d'arrivée (Start, Stop), fréquence centrale, niveau de référence, etc. peut se réaliser de trois façons différentes : via le pavé alphanumérique, via le curseur, ou via les touches incrémentation-décrémentation situées au-dessus de ce dernier. C'est très simple et pratique. De même les unités ou changements d'unités (calcul automatique) sont sélectionnés via les touches à double fonction situées en bas et à droite du panneau de commande.

Une touche à double fonction est activée dans sa deuxième fonction après appui sur la touche «shift» avec l'allumage d'une LED dans cette dernière

FUNCTION POWER ECLRE CENTER USER | RCL START STOP SPAN BEF LEVEL DATA ENTRY ADVANTEST U4941 RF FIELD ANALYZER 9kHz-2,2GH INPUT 500 +27dBm MAX ±50VDC MAX

Un panneau de commandes ergonomique bien réparti par zones fonctionnelles. L'entrée des paramètres peut s'effectuer via curseur, touches ↓, ↑ ou clavier alphanumérique (à droite).

canal adjacent, et mesure CEM normalisée selon les spécifications du CISPR en mode détection quasi-peak.

Sinon il est possible d'entrer ses propres configurations de mesures, et les menus sont entièrement redéfinis-

CARACTÉRISTIQUES DE BASE RÉSUMÉES

Fréquence

Gamme: 9 kHz à 2,2 GHz

Précision sur la fréquence affichée : ± (précision de la dispersion + 0,15 RBW (start, stop, fréquence centrale, + 50 kHz)

marqueur) de 50 kHz à 2,4 GHz, zéro span (dispersion nulle)

Dispersion de fréquence : précision ≤ ± 5%

Précision et stabilité de la référence : ± 1.10-5 (entre 0 et 50°C), ± 2 10-6/an

Dérive : ≤ 10 kHz après un temps de chauffe de 30 minutes

Bruit de phase : ≤ -100 dBc à 20 kHz de la porteuse Bande passante de résolution : 1 kHz à 3 MHz en séquence 1-3 précision ≤ 20% jusqu'à 1 MHz

Bande passante vidéo: de 10 Hz à 1 MHz

Niveau

Gamme: + 20 dBm jusqu'au plancher de bruit

- 132 dBm

Niveau max d'entrée préampli off : + 27 dBm (atténuateur ≥ 10 dB) ± 25 V_{DC}

+ 13 dBm, ± 25 V_{DC} préampli on : 100 dB, 10 x 10 div (pas de 10, 5, 2, 1 dB/div) 10% du niveau de référence/div. Gamme d'affichage log:

linéaire :

quasi crête log: 40 dB (5 dB/div)

Niveau de référence log : 69 dBm à + 40 dBm (pas de 0,1 dB) linéaire :

72,7 µV à 22,3 V - 89 dBm à + 10 dBm (pas de 0,1 dB)

préampli on : Atténuateur d'entrée : de 0 à 50 dB par pas de 10 dB

50 ms à 1000 s et balayage «manuel» Balayage:

avec une précision ≤ ± 5% Déclenchement : continu, monocoup, vidéo, ext, TV

Démodulation : AM et FM avec contrôle de volume audio pour HP interne et jack casque externe.

position. Enfin, si la fonction sélectionnée amène des choix d'utilisation dans un menu ce dernier est affiché à droite de l'écran et les touches de menu situées en regard de l'écran permettent de valider les choix ; la fonction sélectionnée apparaît alors dans une couleur différente. Si plusieurs niveaux de menu sont possibles, on accède aux autres niveaux par «next», autrement on peut

sortir des menus à tout instant et inhiber l'affichage de la fenêtre de contrôle des menus. La touche CPL permet d'opérer en couplage automatique ou non des commandes interdépendantes telles que vitesse de balayage, bande passante de résolution et bande passante vidéo. En désaccouplant l'automatisme qui veille à garder la bonne corrélation pour une mesure valide, on s'expose bien entendu à des possibilités d'erreurs mais l'appareil le rappelle par l'affichage du symbole «UNCAL» à l'écran. Enfin tous les paramètres importants de travail sont affichés en clair en permanence à l'écran de même que les modes spéciaux. Au total de nombreuses fonctionnalités et possibilités que nous n'avons fait qu'effleurer mais qui, une fois l'appareil pris en main avec sa notice très complète, seront vite explorés.

Au plan des précautions d'utilisation,

on veillera à éviter de coupler des ni-

veaux supérieurs à 25 dBm (préampli

off) à l'entrée ou du continu d'une ten-

sion supérieure à ± 25 V. Plus trivial en-

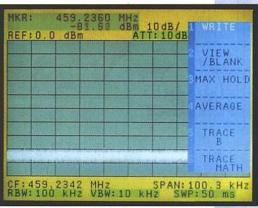
core la fiche d'entrée est du type N, et

certaines PL à l'âme décolletée entrent

fort bien, mais à la déconnexion, la fiche embase femelle est passée de vie

à trépas. C'est une mésaventure, qui, par étourderie, nous est arrivée. Si en l'occurrence cela a mis en relief une bêtise dont nous étions fort marris, cela a aussi permis de mettre en évidence la compétence, la disponibilité et la célérité des services Rohde et Schwarz, car l'appareil n'a été immobilisé qu'une demi-journée, intervention et recalibration comprises. Rappelons que Rohde et Schwarz fabrique et distribue atténuateurs, adaptateurs, coupleurs, antennes de métrologie (notamment pour les mesures EMC)... appropriés pour répondre à tous les cas d'utilisation. Le bon outil pour la bonne mesure, en toute sécurité. Les niveaux excessifs dans certains environnements peuvent être vite dépassés... et les dispositifs de commutations ainsi que le mélangeur d'entrée n'apprécient pas qu'on joue trop avec leurs

Hormis ces quelques rappels qui concernent n'importe quel analyseur


ADVANTEST
ADSIBO AO/DO POWER ADAPTOR

ON BEFORE TO CONNECT
THE AD/OLD POWER ADAPTOR
ADVANTAGE CONNECT
THE AD/OLD POWER ADAPTOR
REFORE TO CONNECT
THE AD/OLD POWER ADAPTOR
REFORE TO THE RISTRACE
ADVANTAGE
RESERVED AND MANUAL
REAL PROPERTY
RESERVED
RESERVED AND MANUAL
REAL PROPERTY
RESERVED
RESERVED AND MANUAL
RESER

de spectre RF, disons tout net que l'U4941 est agréable à l'exploitation et sans complications, la plupart des mesures courantes ne faisant appel qu'à des choix rapidement effectués.

CONCLUSION

Avec l'U4941, Advantest propose un matériel très polyvalent, d'excellentes caractéristiques et doté de nombreuses fonctionnalités, dont certaines inédites dans sa catégorie. Son faible poids, les différentes possibilités d'alimentation et l'interactivité totale avec l'environnement externe (RS 232, GPIB, mémoires, sortie vidéo, commandes de balayage) le rendent particulièrement attractif pour un prix de 85000 F HT. Deux versions encore plus évoluées existent : une avec générateur de poursuite et une avec carte vidéo pour visualiser l'image TV en mode zéro span (RBW ≥ 3 MHz). Rappelons que l'appareil est aussi disponible en version N: 75 Ω avec niveaux en dBuV.

L'écran avec la fenêtre de menu et l'affichage des principaux paramètres de commande avec leur valeur.

Enfin l'U4941 agrémente la gamme métrologique très diversifiée en HF, SHF et hyperfréquences, proposée par le leader européen Rohde et Schwarz avec tout le soutien logistique que cela suppose.

C. DUCROS

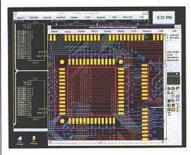
FAITES RIMER PERFORMANCE AVEC ECONOMIE

PADS-WORK

8 900 F HT

Incluant : Placement/Routage 150 Cl, Définition 1μ, Routage 100%, Sorties traceur, phototraceur, imprimante, Postcript, machines de perçage, Gestion des modifications. Compatibilité ascendante et évolutivité totale vers PADS-PERFORM.

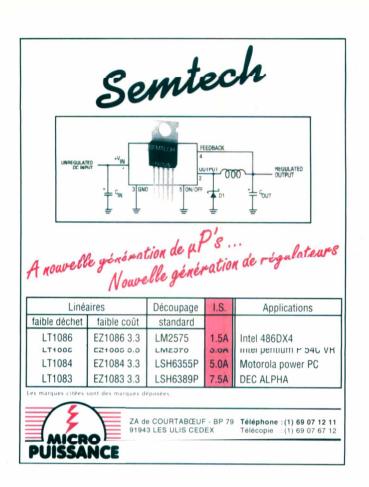
Disponible sous DOS™ et Windows™ en version française.


◆ PADS-PERFORM 24 900 F HT ⁽¹⁾

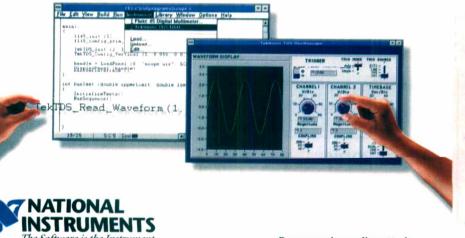
Incluant : Placement Dynamique, Routage auto-interactif, Calcul intelligent de cuivres, Pistes courbes, Rotation 0,1°, Calcul d'impédance et diaphonie, Lien dynamique avec saisie de schéma et Autocad™, Sortie insertion automatique de composants, etc.

Disponible sous DOS, Windows, Windows NT, UNIX en VF.

(1) à partir de


CAO ELECTRONIQUE

L'expertise en productivité électronique


24, Av. Henri Barbusse 93013 BOBIGNY Cedex 48.91.80.70

Découvrez l'Interactivité avec LabWindows/CVI

La puissance de programmation du C, la facilité de développement du Basic

 Combinez la performance du code ANSI C compilé avec le confort de la programmation interactive

 Dialoguez directement avec los cartes d'acquisition de données et les instruments GPIB, VXI et RS-232

 Générez le code de vos programmes de facon automatique

vational instruments France

Code/Ville

Centre d'Affaires Paris-Nord Immeuble "Le Continental' BP 217 - 93153 Le Blanc Mesnil CEDEX

Pour recevoir une disquette de suffit de nous renvoyer le coupon réponse ci-joint, par courrier ou par télécopie: (1) 48 14 24 14 télécopie: ou appelez le: (1) 48 14 24 24

Nom/Prénom Fonction Société

Mon PC est équipé d'un lecteur 3.5" □ 5.25" □ de CD-ROM □

Tél. © Copyright 1994 National Instruments Corporation. Tous droits réservés. Les noms de produits et de sociétés cités sont PP

La mesure au service de l'enseignement

ous sommes le 1er fabricant français d'instruments de mesure.

Notre expérience et notre savoir-faire reconnus dans ce domaine, nous ont permis d'élaborer une gamme de produits parraitement adaptés aux exigences de l'enseignement.

Nos appareils sont les témoins d'une volonté forte de notre société de répondre aux évolutions des programmes techniques. Notre objectif : accompagner les élèves dans l'apprentissage de la mesure et contribuer

à la formation des professionnels de demain.

Une gamme renouvelée

Des prix étudiés

Une sécurité et une fiabilité renforcées

Pour l'avenir de l'image sans mirage,

Sefram invente la mesure automatique

Tél.: 69 41 31 32

Modèle présenté :

mesureur de champ vidéo, automatique et portable (7830).

FRANCE/USA

TEASER

Recevez sous 48 H.

Le **logiciel BBTPRO** pour télécharger à partir de votre PC. Il suffit d'envoyer 15 francs en timbres et une disquette vierge avec votre nom et adresse à :

France-Teaser
17 Rue Corot
92410 VILLE D'AVRAY

La liste des catégories de logiciels présents sur TEASER :

- Adultes-Only • Anti-Virus
- Bureautique
- Communication
- Compression
 Educatifs
- Graphisme
- Jeux Musique
- MusiqueProgrammationRay-Tracing

Pour DOS et/ou WINDOWS

Téléchargez

Sur notre serveur les dernières versions des meilleurs programmes PC en provenance de FRANCE et des USA. Tous nos fibbles confus et sont compactés pour économiser votre temps de transfert.

20.000 Fighiers

C'est le nombre total de ce que nous vous offrons en accès libre sur le **3615 TEASER** dont une superbe sélection pour adultes.

TOCAD3 Tel. : 4215 05 91

DISPAC: **DISPATCHING AUDIO**

La réalisation que nous vous proposons ici a été entreprise à l'origine pour effectuer des tests de machines diverses «en aveugle», tels qu'amplis sur une même enceinte, enceintes sur un même ampli, sources sur une chaîne de référence, etc. Son élaboration et sa construction font appel à quelques astuces applicables à de nombreux projets, et son aspect didactique est loin d'être sans intérêt. Deux versions seront proposées : la première pour des comparaisons locales ou domestiques, la seconde - plus ambitieuse permettant de reporter les commandes et l'affichage jusqu'à 3 km au moyen d'une simple paire.

Nous nous sommes limités à 5 machines à tester au maximum et ce sur 1 à 4

cycles pseudo-aléatoires, ce qui conduit déjà à ce stade à 20 rapports d'écoutes.

Principes adoptés

Comparer ne serait-ce que deux systèmes audio pose de nombreux problèmes, parmi lesquels on peut isoler rapidement les différences de rendement et de qualité, sans oublier les conditions relatives à l'objectivité du jury et à son confort.

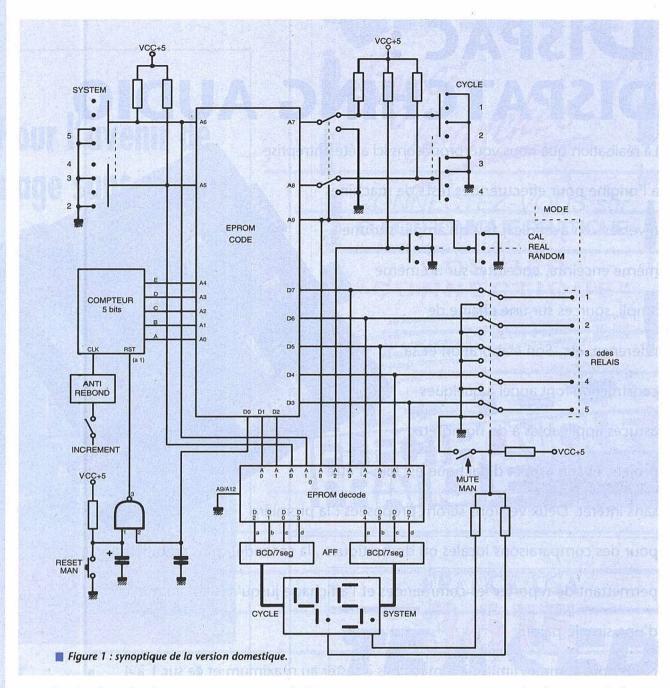
Le simple fait d'envisager un modeste mécanisme permettant d'effectuer des comparaisons, impose de tenir compte de tous ces paramètres et conduit comme nous allons le voir - à une étude plus complexe que de seules

commutations.

Notre étude se limite aujourd'hui essentiellement à l'aspect humain des tests, soit : comment commander un système de commutations et faire en sorte également de favoriser aux acteurs de l'expérience, l'objectivité et la liberté d'esprit indispensables, gages de rapports sérieux et honnêtes ?

Plusieurs solutions sont envisageables: 1 - on fait appel à un «candide» ayant pour tâche de commander les commutations à son gré ; et de noter soigneusement ses sélections pour qu'on puisse s'y retrouver au moment du bilan. Mais un vrai candide n'existe pas dans ce genre de situation ou alors c'est un copain investi d'une charge l'excluant totalement de l'expérience ce qui est fort frustrant.

2 - on s'accorde les services d'un automatisme générateur de combinaisons aléatoires. C'est à notre avis la méthode la plus ridicule qui soit, car elle im-pose un nombre d'écoutes considérable (si on veut obtenir une moyenne raisonnable) et elle fait fi de la tension nerveuse et de la concentration du jury. Pour trois systèmes, on peut «tomber» 10 fois sur A ou B et ne «passer» que 2 fois sur C! Si pour donner des chances équitables à 5 systèmes il faut envisager 150 écoutes, ce sont les membres du jury qui cette fois seront difficiles à sélectionner.


3 - on opte pour un automatisme pseudo-aléatoire élaboré de telle sorte qu'il équilibre les chances de tous les matériels en test sans pour autant accabler le jury.

C'est cette formule que nous avons adoptée ici, en veillant toutefois à laisser toute liberté de création.

Restait à définir le nombre de systèmes en test et le nombre de passages sur chacun (cycles). Par expérience, 5 systèmes nous ont semblé un maximum raisonnable et 4 cycles également.

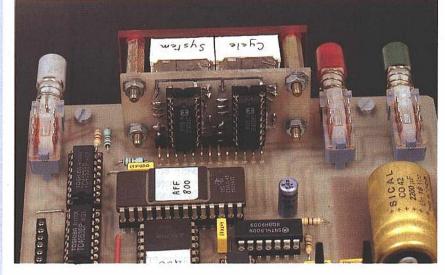
Il s'avère en effet qu'il est bien prétentieux de prétendre comparer sérieusement 10 systèmes par exemple. Si c'était le cas, une première écoute conduirait immanquablement à des «éliminatoires» divisant vite en deux groupes les pièces méritant d'être comparées entre elles.

Voici donc le cahier des charges exact, présenté par le biais des commandes mises à la disposition de l'utilisateur:

1 - un choix par sélecteur entre 2 et 5 systèmes à comparer. 2 - une commutation de cycles, sélec-

tionnant de 1 à 4 passages pour tous les systèmes sélectionnés.

3 - une clé de reset remettant la séquence à zéro et commandant également un mute de toutes les sorties.

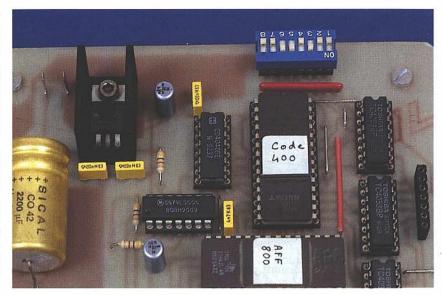

4 - un poussoir d'incrément faisant

avancer - après chaque appui - les pas

programmés. 5 - une clé de mode, à trois positions: a - CALibration: ce choix est destiné aux réglages des machines avant de commencer la séance proprement dite, mais peut servir également à faire des écoutes sélectives en fin de cession. On incrémentera en quasi boucle (nous expliquerons le «quasi» plus loin), en fonction du nombre de systèmes sélectionnés. Par exemple pour trois on tournera ainsi 1,2,3,1,2 etc.

b - REAL: cette position va décoder en clair les données pseudo-aléatoires et afficher par exemple 34 pour indiquer qu'on est au troisième passage (cycle) et qu'on écoute le quatrième système. c - RANDOM: c'est dans cette position que l'on fera l'écoute en aveugle, car l'affichage ne sera plus en relation avec la situation réelle.

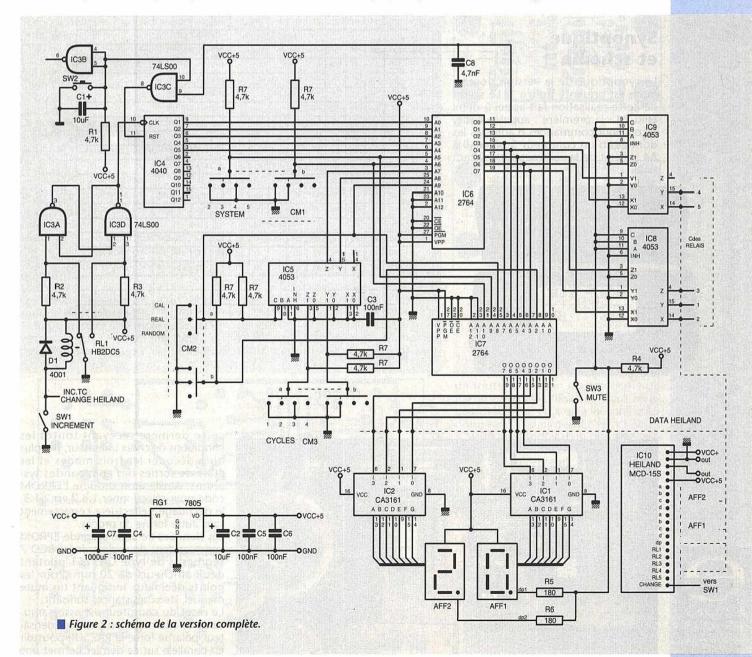
I se contentera de compter de 1 à cycle x system, soit de 1 à 20 pour 4 cycles et 5 systèmes. Cette formule est très intéressante car elle permet de ne tenir en stock qu'une seule fiche de rapport à distribuer au jury, quelle que soit la



séance. Pour quatre cycles trois systèmes on s'arrêtera à 12, un point c'est tout. De plus elle offre même à celui qui a câblé et réglé les machines, de faire partie du jury en toute intégrité. Pour avoir servi de candide une fois (choix du câblage), votre serviteur peut assurer que c'est une situation fort exaspérante car on perd vite son objectivité, même en faisant de gros efforts!

A noter également qu'à chaque instant on pourra prouver dans quel cycle et quel système on se trouve, simplement en basculant entre REAL et RANDOM. 7- l'affichage en CAL sera précisé par une écriture du type 3 -, le premier chiffre indiquant le système que l'on règle, le - que l'on est en CAL. Dans tous les cas un affichage - - signifiera la fin d'une séquence et conduira au mute des sorties (idem en reset).

8- le mute manuel sera quant à lui signalé par l'allumage des deux points décimaux des afficheurs, en ajout à la sélection en cours (sans la dé-programmer).


grammer). 9- une télécommande est prévue pour la version la plus élaborée, ainsi qu'une

transmission par une paire des commandes de sorties, de l'affichage (mute compris) et d'une information indiquant que l'opérateur est en train d'incrémenter.

10- nous verrons enfin qu'il sera pos-

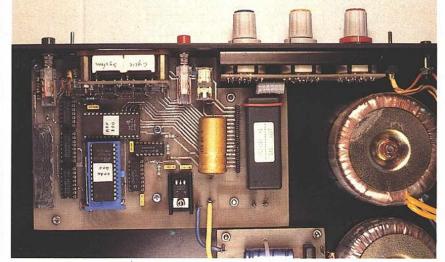
sible (même après tous les réglages fait en CAL) de procéder à un tirage au sort de l'EPROM contenant les séquences pseudo-aléatoires, mettant chacun alors dans la situation de totale innocence et garantissant aussi l'im-

(A5/A6), celui de cycle (A7/A8) et celui de mode (A9).

L'octet de données se décompose ainsi : D0 = reset du compteur (fugitif), D1/D2 = état cycle/real, D3 à D5 = commandes des relais system.

L'astuce consiste à reprendre D1 et D2 pour adresser A0 et A1 de l'EPROM décodage affichage, A2 indiquant cal/real, A3 à A7 analysant les données EXACTES D3 à D5, A8 faisant la différence entre cal-real et random, A9 et A10 identifiant enfin le choix system. Cette solution qui peut sembler complexe au premier abord, présente l'avantage de permettre de ne changer que l'EPROM code et de ne pas toucher à celle décode - affichage, laquelle restera toujours conforme. En effet,

partialité des tests. Nous avions pensé à utiliser la même EPROM et à exploiter les adresses libres pour proposer ce choix, mais il s'avère plus «transparent» de faire tirer au sort une EPROM sans signe distinctif. Le système permet cette solution, car il est conçu de telle sorte qu'il n'est pas nécessaire de connaître le contenu de l'EPROM pour l'utiliser.

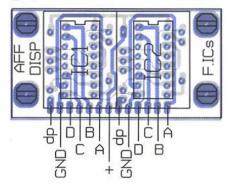

Synoptique et schéma

Le synoptique de la version domestique est présenté figure 1. Le secret de cette réalisation fait appel à deux EPROM: la première, appelée code, reçoit pour commandes d'adresses les données d'un compteur 5 bits (A0 à A4), l'état de la commutation system

		0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	
1	00	01	81	41	81	41	81	41	81	41	81	41	81	41	81	41	81	1 15 fois 2
1	10	41	81	41	81	41	81	41	81	41	81	41	81	41	81	41	00	1
1	20	01	81	41	21	81	41	21	81	41	21	81	41	21	81	41	21	1 10 fois 3
CAL	30	81	41	21	81	41	21	81	41	21	81	41	21	81	41	21	00	i
	40	01	81	41	21	11	81	41	21	11	81	41	21	11	81	41	21	1 7 fois 4
	50	11	81	41	21	11	81	41	21	11	81	41	21	11	00	00	00	i de la composición dela composición de la composición dela composición de la compos
-	60	01	81	41	21	11	09	81	41	21	11	09	81	41	21	11	09	6 fois 5
,	70	81	41	21	11	09	81	41	21	11	09	81	41	21	11	09	00	1
						de	80 a	1FF:	00			ale:	da					
	200	01	41	81						de 2	203 a 2	20F : 0	00				1	
	210	01	41	21	81					de 2	14 a 2	23F : 0	00			Shi		
	240	01	21	11	41	81				de 2	245 a 2	25F : (00					
	260	01	41	09	11	81	21			de 2	266 a 2	27F : 0	00					
	280	01	41	81	43	83		10/8		de 2	85 a 2	29F : 0	00					
	2A0	01	41	21	81	23	43	83		de 2	A7 a	28F : (00	of the				
	2C0	01	21	11	41	81	13	83	23	43			d	e 2C9	a 2DI	F:00		
	2E0	01	41	09	11	81	21	0B	23	43	13	83	d	e 2EE	a 2FI	: 00		
	300	01	41	81	43	83	45	85	99	de 3	07 a 3	31F : 0	00					
	320	01	41	21	81	23	43	83	25	85	45	1000	d	e 32A	a 33F	: 00	31	
	340	01	21	11	41	81	13	83	23	43	25	85	15	45	34D	a 35F	:00	
	360	01	41	09	11	81	21	08	23	43	13	83	45	25	15	0D	85	
						102004		37F :						gg/L	d look			
	380	01	41	81	43	83	45	85	47	87		13116		39F :				
	3A0	01	41	21	81	23	43	83	25	85	45	87	27	47		a 3B		
	3C0	01	21	11	41	81	13	83	23	43	25	85	15	45	87	47	17	
	3D0	43	EB)					3DF	100000					2 12				
	3E0	01	41	09	11.	81	21	0B	23	43	13	83	45	25	15	0D	85	
	3F0	27	87	OF	17	47	00	00	00	00	00	00	00	00	00	00	00	
							C	UMP	CODE									

cette dernière recevant toutes les conditions de choix utilisateur, n'a plus qu'à décoder les trois modes et les états de sorties des commandes systèmes. Ainsi, si on modifie l'EPROM code pour sélectionner 1.3.2 en 2.1.3, le décodage s'effectuera correctement sans autre forme de procès.

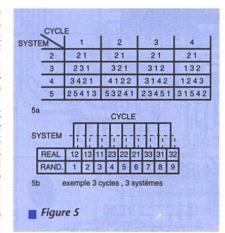
Les données de cette seconde EPROM commandent deux décodeurs BCD 7 segments de type CA3161 pilotant deux afficheurs de 20 mm. Pour les points décimaux indiquant un mute manuel, deux résistances suffisent.


Le reset du compteur est assez amusant: à l'allumage, un petit condensateur polarisé force la RAZ. Un poussoir en parallèle sur ce dernier permet une

00 = AA	100 =	AA	200 =	AA		AA		AA		2000		-		AA	700 = A	-	-
08 = A4	104 =	AA	208 =	A4	304 =	AA	408 =	A4	504 =	AA	541 =	42	608 =	A4	704 = A	741 =	42
10 = A2	108 =	14	210 =	A2	308 =	14	410 =	A2	508 =	14	542 =	46	610 =	A2	708 = 14	742 =	46
4	109 =	12	220 =	A6	309 =	12	420 =	A6	509 =	12	543 =	41	620 =	A6	709 = 12	743 =	41
~	10A =	16	4	糖	30A =	16	440 =	A1	50A =	16	544 =	2F	640 =	A1	70A = 16	744 =	3F
1-	10B =	11	_		30B =	11	Ť	184	50B =	11	545 =	5F	680 =	A5	70B = 11	745 =	' 9F
100	10C =	2F	1-		30C =	3F	4		50C =	4F	546 =	1 14	Ť		70C = , 4F	746 =	1 34
2-	10D =	4F			30D =	6F			50D =	6F	547 =	54			70D = 1 04	747 =	94
	10E =	6F	2-		30E =	8F	1-		50E =	04	the line				70E = 1 54	780 =	54
CAL	10F =	8F	3-		30F =	04	2-		50F =	34			1-		70F = 174	781 =	52
2 sys	110 =	24	WINGS.		310 =	24	3-		510 =	24	1000		2-		710 = 24	782 =	56
	111 =	22	CAL		311 =	22	portie)		511 =	22	district.		3-		711 = 22	783 =	51
	112 =	26	3 sys	1	312 =	26	4-		512 =	26				180	712 = 26	784 =	2F
	113 =	21			313 =	21	5-		513 =	21	1000		4-		713 = 21	785 =	1 6F
	114 =	1F			314 =	1F	CAL		514 =	3F	122		5-		714 = 1F	786 =	1 44
ROM I	115 =	3F			315 =	5F			515 =	8F	FRE		041		715 = ! 8F	787 :	84
	116 =	5F			316 =	9F	4 sys		516 =	24	200		CAL		716 = 114	20.0	
BOR	117 =	7F			317 =	24	No.		517 =	44			5 sys		717 = 1 02	186	
DESTRUCTION OF THE	(Alegaria	nie:			320 =	34	V tak		520 =	34					720 = 34	188	
					321 =	32			521 =	32	ALC: N				721 = 32	0.8	
					322 =	36			522 =	36					722 = 36	100	
					323 =	31			523 =	31					723 = 31		
					324 =	2F			524 =	1F	160				724 = , 5F		
					325 =	4F			525 =	7F					725 = 1 7F		
					326 =	7F	100		526 =	9F					726 = 1 24		
					327 =	14			527 =	64	基键图			뾃	727 = 1 64	100	
						ī	DUMP A	FF									
	F	au	re 4														

Figure 6 a1

Figure 6 a2



action manuelle. Jusqu'ici rien d'extraordinaire, mais pour le reset du compteur en mode fonctionnement, c'est D0 et un petit condensateur de 4,7 nF qui s'occupent de terminer les boucles, quand on le désire. C'est simple et très souple comme nous pourrons le constater.

Le schéma de la version complète est visible figure 2. Il comporte, outre ce qui a été vu sur le synoptique et qui est facilement identifiable, un autre point commun à la version domestique: Il s'agit de IC5 chargé, par un bit de CM2, de commuter soit en position cal et donc de bloquer A7 et A8 de IC6 à zéro (comme pour cycle = 1), soit de laisser A7 et A8 aux données de CM3. Par ailleurs, la commande mute manuelle - représentée figure 1 par un quintuple inverseur - est en réalité confiée à deux 4053 (IC8 et 9).

Les différences entre les deux versions sont de deux ordres:

1- RL1 remplace un simple poussoir inverseur pour l'incrément. Ainsi, on peut constater que l'implantation

d'une télécommande est d'une simplicité exemplaire : une masse commune et trois poussoirs peuvent reporter le reset, l'incrément et le mute (4 fils). 2- un module Heiland MCD 15S (émetteur) - bien connu des lecteurs et importé par Sélectronic - offre de faire transiter sur deux fils (maxi 3 km),

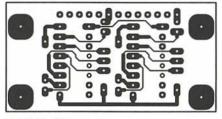
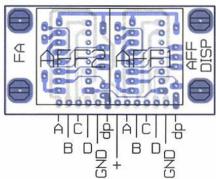



Figure 6 b1

Figure 6 b2

15 bits de données avec un rafraîchissement 50 fois par seconde. Il s'occupe de toute la gestion du protocole de transmission et l'utilisateur - sans composant externe - n'a qu'à lui confier 15 données TTL, alimenter en +12V et +5V, pour disposer d'un bus série bifilaire, prêt à se raccorder au module MCD 15E (récepteur). Ce dernier, à la mise en oeuvre aussi simple, restituera en parallèle les 15 états présents sur l'émetteur.

De ces petites merveilles il faudra user avec discernement, car le coût du couple avoisine 700 F. Ce prix est largement justifié au regard des performances, de la simplicité d'emploi et de la fiabilité; mais encore faut-il avoir besoin d'un tel type de liaison et de telles distances! Bien entendu, 3 km est un maximum que nous n'exploiterons pas, mais l'idée est de véhiculer par un simple multipaire de 3 paires les deux voies de modulation source en symé-

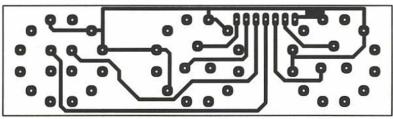
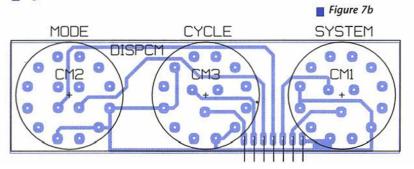



Figure 7a : carte commutations.

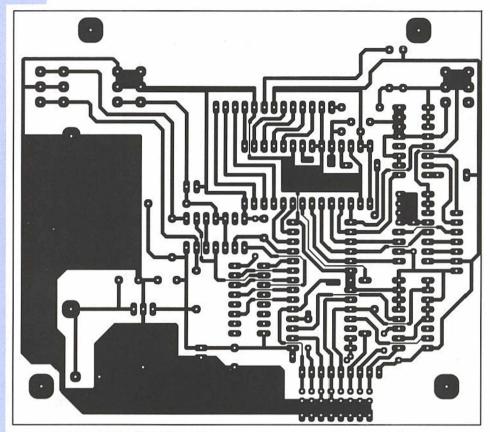


Figure 8a : version «domestique».

Figure 8b CF TEXTE CM₂ a_ CM3 00000R7X 4 C40 0C50 FILS G R1 IC8 m #1 SPAC 9 OC30 - R5 Ö 0 0 0 0 0 0 dp 0 0 П П SWI SW2 SW3 RST INC MUTE trique plus les commandes de sélection et de reports pour activer des afficheurs géants, le tout à une cinquantaine de mètres (condition moyenne de concert en salle comme en extérieur).

Un usage domestique (écoutes dans un salon, une discothèque) il n'est pas nécessaire de déporter l'affichage: les afficheurs de 20 mm qui ont été choisis pour le rack de commande peuvent aisément être lus par tous jusqu'à 5 mètres. Si le rack est à proximité du jury (l'animateur pouvant en faire partie), il ne restera à déporter que les commandes machines, soit 5 lignes relativement courtes.

Nous verrons au moment de la réalisation pratique que la formule la plus complète (ayant exigé un circuit imprimé en double face) offre une possibilité intermédiaire très intéressante tant par sa souplesse que par son aspect économique (exploitation maximale des modules Heiland).

La répartition des bits de IC10 est la suivante: 4 pour AFF1, 4 pour AFF2, 1 pour dp (mute), 5 pour les sorties et 1 appelé change, pouvant être utilisée afin de signaler au jury que l'animateur incrémente d'un pas. Ce dernier bit est prélevé sur SW1: le tirage à 1 par défaut étant assuré par la bobine du relais RL1.

EPROM's

Le dump de l'EPROM code (IC6) est donné figure 3 et celui de IC7 (décode - affichage) figure 4. Pour cette dernière, il n'y a qu'à recopier simplement les quelques données aux adresses indiquées, et laisser vierges (FF) toutes les autres. Nous avons illustré les quatre colonnes relatives aux affichages CAL dans les 4 systèmes. Si on voulait -3 au lieu de 3- ou 3 tout court, c'est ici qu'il faudrait intervenir. Pour le reste, il n'y a pas à notre avis de raison de modifier quoi que ce soit. La traduction en clair cycle / system (real) et random (1,2,3 etc..) étant faite, il n'y a pas fondamentalement à la remettre en cause.

Pour code, il en est autrement : les sauts d'adresses DOIVENT être remplis de 00 pour éviter de commander plusieurs sorties en même temps quelles que soient les conditions (commutations de CM1 à CM3 en cours de fonctionnement par exemple). On concevrait mal en effet (et l'ampli encore moins) cinq enceintes reliées en parallèle, même pendant un temps très court!

Nous laisserons à chacun le soin d'analyser le contenu d'IC6 dans le détail, mais nous avons illustré les 8 premières lignes correspondant à CAL, car elles imposent un commentaire :

Notre compteur (IC4) disposant de 5 sorties est en mesure de compter 32 états en boucle, c'est à dire sans RAZ particulière.

Le zéro affecté au mute (RAZ active) est la donnée 01. Des 31 états restant, nous avons choisi d'exploiter tous les bits au maximum. Ainsi, pour 2 systèmes, l'incrément permettra de faire 15 fois le passage 1 vers 2, avant que le 32 ème état mette D0 à 0, imposant

alors un reset de IC4, donc un saut d'adresse à 00 (donnée 01).

C'est en fait très simple: un incrément de fin de cycle va commander la RAZ de IC4, donc aussitôt un saut d'adresse puisque la donnée de IC4 est brièvement passée à 0. Comme l'EPROM comporte pour donnée 01 à cette adresse, le système est prêt à repartir! Mais ce saut d'adresse impose une valeur «temps» pour découper les deux états RAZ puis saut à data 01, ce que C8 se charge de faire et de respecter en douceur.

Cette méthode est très intéressante car elle permet d'asservir à la fois un compteur «libre» et des clés de conditions sur la même EPROM : un bit de donnée est toujours en mesure de piloter un reset et de mettre le système en attente pour un nouveau cycle.

Dans des cas plus délicats que celui maquetté ici, un monostable calibré pourrait assurer le transit entre la commande de RAZ et la RAZ effective. Ici,

C8 convient parfaitement.

Un rapide calcul permet de voir que dans notre cas précis, 30 états de commandes (+ 1 de cde RAZ et 1 de RAZ effective); c'est 15 fois 2, 10 fois 3, 7 fois 4 (reste 2) et 6 fois 5... Avec nos systèmes 2,3,4 ou 5, seul le 4 imposera une commande de RAZ avant la fin d'un tour complet du compteur. C'est pourquoi on trouve 00 en 5D. C'est aussi simple que cela! Si en CAL on voulait tout niveler par le bas (6 passages avant un mute), il suffirait de bloquer le système 2 à 6 au lieu de 15, le 3 à 6 au lieu de 10 et le 4 à 6 au lieu de 7. A vous de mettre les 00 aux bons endroits!

Il sera aisé d'isoler les data RANDOM contenant le pseudo-aléa annoncé. Elles sont au nombre de 56 (les 01 et 00 ne changent pas puisqu'ils sont asservis aux conditions utilisateur). Le petit tableau figure 5a dévoile notre codage de base et ses effets. En 5b on trouvera la correspondance REAL / RANDOM pour 3 systèmes et 3 cycles. On constatera que pour cet exemple nous avons fait en sorte de ne jamais, faire deux comparaisons d'un même système à la file.

Mais rien n'est interdit pour peu que le produit cycle x system conduise toujours à une égalité de chances pour

tous les systèmes.

Si on prend pour exemple deux machines à comparer (appelons-les A et B, pour 4 cycles on peut faire à l'extrême AAAABBBB ou plus raisonnablement une combinaison du type AB-BAABBA.

L'important est de pouvoir assurer au jury (on peut le prouver en REAL) que tous les systèmes ont été écoutés chacun autant de fois.

On peut alors pousser le bouchon plus loin et faire tirer au sort 2 EPROMs. Après l'écoute RANDOM de la première, on la met soigneusement de côte et on engage la seconde. Une deuxième feuille de test est alors remplie. Puis on passe en REAL et on refait un tour rapide d'affichage de la seconde EPROM puis de la première, et chacun peut alors constater l'ordre (ou plutôt le désordre) des tests qui lui ont été proposés.

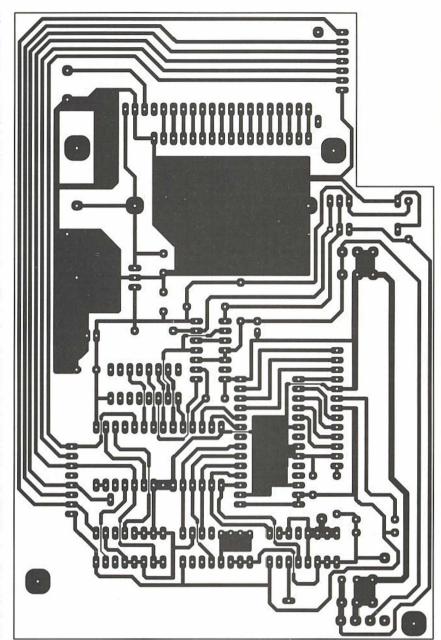
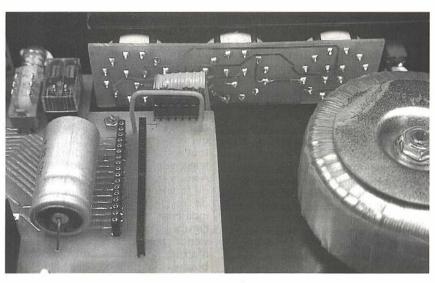



Figure 9a : coté cuivre version complète.

Il suffit alors au câbleur d'ouvrir une enveloppe dans laquelle était notée par exemple : Sy1 : HEIL, Sy2 : NEXO, Sy3 : TC, Sy4: MARTIN etc.. pour que les membres du jury mettent en relation leurs notes d'écoutes avec les objets écoutés.

RÉALISATION

La construction de cet ensemble fait appel - quelle que soit la formule - à deux cartes communes. La première, en double face, porte le bloc d'afficha-

ge complet (afficheurs et décodeurs 7 | Figure 9b : coté composants. segments), tel qu'on peut le voir figures 6a et 6b. L'assemblage étant un peu particulier (composants montés sur les deux côtés de la carte), nous avons choisi de le présenter comme deux «simple face».

Les photographies en diront plus qu'un long discours, et il faudra penser à replier certaines pattes inutiles aux afficheurs afin de ne garder que celles qui sont indispensables et insérables dans les supports expurgés.

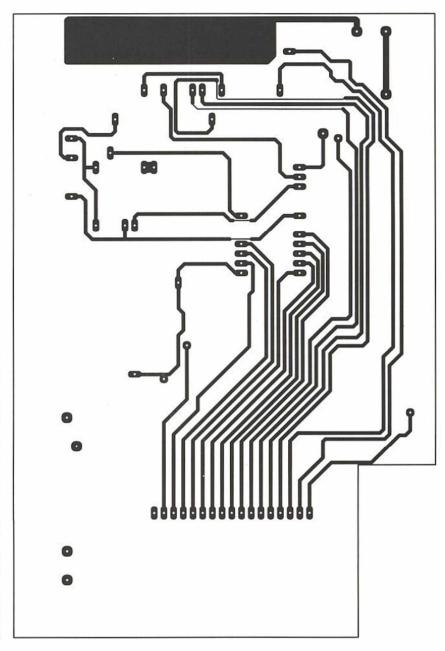
Ce petit bloc pourra intéresser de nombreux lecteurs de par sa compacité et du fait qu'il a volontairement été laissé accès à toutes les broches utiles, dp compris.

La seconde carte (figure 7) regroupe les trois commutateurs Lorlin - un de 4 circuits 3 positions et deux de 3c 4p permettant de coder mode, cycle et system. Vient alors le moment du choix:

A: la version domestique (figure 8), en simple face mais avec de nombreux straps (ne pas oublier celui qui rase la partie supérieure de IC6), et deux fils à souder sous IC6.

Pour le raccord à la carte des commutateurs, il a été prévu une connexion HE14 mais aussi l'implantation d'un support 16 broches pour envisager d'y placer un dipswitch.

A noter que pour fonctionner avec les dumps d'EPROMs proposés, A10 et A11 (voire A12) seront à forcer à 0. Incrément et Reset seront à adapter en poussoirs fugitifs alors que Mute pourra garder ses positions tenues.


B : la version complète n'a pu échapper à la technique du double face, toutefois sans métallisation des trous. C'est personnellement celle que nous avons retenue de par le fait qu'elle simplifie considérablement le câblage, offre une sortie série et la possibilité d'ajouter une télécommande très simple.

Une photographie présente la mise en place dans un rack 1U. Est également prévu dans cet exemple, outre l'alim 12V pour la carte, une alim audio +/- 15V .

Tout est alors prêt pour accepter la section audio pure et (ou) installer directement un réseau de commutation des machines à tester. Il suffirait alors de buffériser les 5 sorties, pour disposer d'une version évolutive et économique. En phase d'essais, un jeu de 5 LED + résistances de 330 Ohms suffira pour s'assurer du bon fonctionnement des sorties.

Pour Mute, un inverseur trois positions de type «fugitif, off, tenu» est idéal. Si on envisage une télécommande, les quatre sorties sont répertoriées à droite de SW1.

La connexion avec la carte de commutations est directe et le MCD 15S est montable sur support FRB (en barrette). Il suffit pour cela de placer en dessous un petit morceau de mousse antistatique et de rabattre une bride soudée à la carte. Ainsi on peut démonter facilement ce module et pourquoi pas ? - l'affecter à d'autres tâches en dehors des cessions de tests. Pour échanger l'EPROM code, un support mis en réhausse et un autre à in-

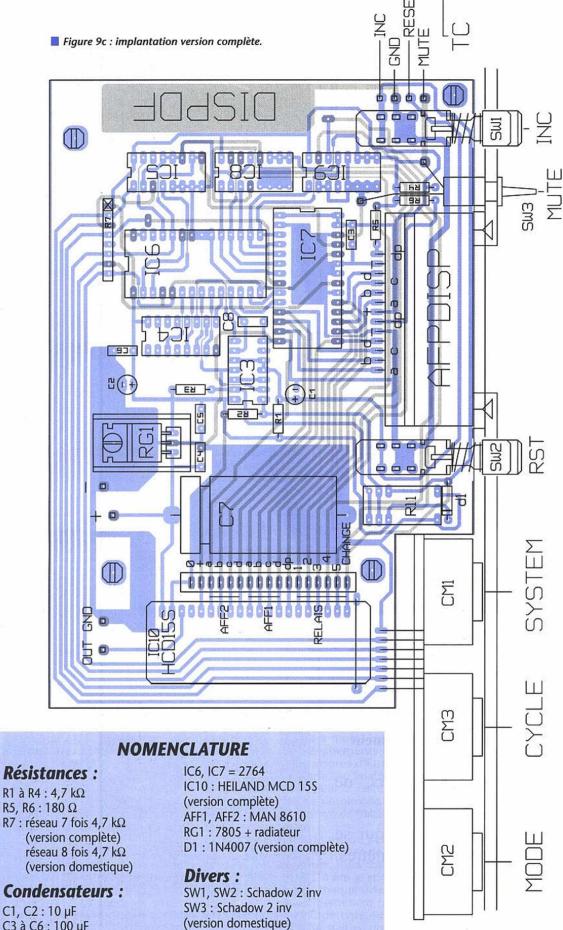
sertion nulle rendent la tâche facile. A droite de IC10, une barrette sécable sert à la fois aux transferts des faces (via) et de «slot d'extension».

Certains d'entre-vous s'étonneront peut-être d'une découpe dans le circuit, mais comme elle permet d'engager la carte des commutateurs et de tout entrer dans 1U, les deux coups de scie s'avèrent très avantageux!

A noter quand même une particularité de fonctionnement : comme il a été dit, on peut passer de Real à Random indifféremment en cours de tests. Par contre, si on revient en Cal tout deviendra faux. En effet, le compteur Cal n'a que peu de reset avant la fin de boucle (sauf pour 4 cycles) et les données de IC4 ne peuvent convenir aux autres modes.

Conclusion

En guise de conclusion provisoire, il nous semble important de préciser que la souplesse du système permet d'envisager d'autres usages, comme par exemple la commutation d'enceintes dans une maison ou un appartement.


Rien n'interdit en effet - au prix d'une reprogrammation partielle des EPROMS - de construire une centrale de distribution pour divers lieux tels que salon, cuisine, chambre, salle de bain et jardin, voire commander des mises en série ou en parallèle de plusieurs jeux.

Attention toutefois aux assemblages en parallèle!

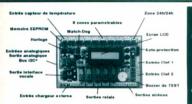
Le mois prochain nous verrons la commutation «sources», HP, le report d'affichage géant et la distribution des sources.

Chaque module sera utilisable indépendamment; et il y a de la surprise dans l'air...

Condensateurs:

C1, C2: 10 µF C3 à C6 : 100 µF C7: 2200 µF C8: 4,7 nF

Semiconducteurs:


IC1, IC2: CA3161 IC3:74LS00 IC4:4040

IC5, IC8, IC9: 4053

inter 3 pos. : fugitif/off/tenu (version complète) CM1, CM3: Lorlin 3 circuits 4 positions

CM2: Lorlin 4 circuits 3 positions RL1: HB2DC5 (version complète) Supports tulipe, barrettes sécables, visserie.

CENTRALE
D'ALARME
SENTINEL
PROTECTION
DISSUASION
REGULATION
ECONOMIE
CONFORT
AUTOMATISATION
DOMOTIQUE

evant le formidable succès de notre système d'alarme "SUPERVISOR", il était tout-à-fait normal d'en envisager une version encore plus évoluée. C'est chose fait a voluée. C'est chose fait à fond les possibilités du bus I2C, cette petite merveille bouscule tous les concepts existants grâce à ses capacités

ECONOMIE CONFORT

AUTOMATISATION

Épites chargeur s'inter

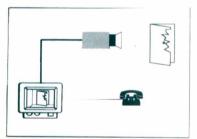
Époustouflantes mélant conjointement des fonctions domotiques et de protection. Son utilisation ultra-simple (2 boutons-poussoirs) associés à un afficheur LCD sur lequel s'inscrit en clair de nombreux messages, la rendra instantanément exploitable par toute votre famille. Aperçu de ses possibilités: 8 zones configurables: nom en clair (16 caractères) / instantanée / retardée / NO / NF, etc... - 1 zone 24h/24h - 9 sorties programmables - 2 entrées de mise en service - 1 chargeur de service et des alarmes - Système d'auto-test vous indiquant sur l'afficheur, le nom d'un composant susceptible d'être défectueux - Affichage à l'écran des différentes temporisations - Réarmement et éjection automatique des zones - Mémorisation non volatile (EEPROM) - Notice de 30 pages avec schémas théoriques, etc... Une interface vocale optionnelle "NATHALYS" dotée d'une charmante voix féminine (plus de 130 mots), vous assistera à tout moment par l'émission de messages du style: "Temporisation de sortie active, veuillez quitter les lieux rapidement", "Attention, centrale d'alarme en veille, protection partielle", etc... Couplée à un transmetteur téléphonique, elle pourra même vous appeler en cas d'alarme "Attention ! I alarme mémorisée, détection radar sur la zone N° 4, mémorisée Lundi à 17h3-f' ou sur simple programmation afin de vous faire un état des lieux: "Bonsoir, il est 19145, la température est de 22° r. rien à signaler mice à nort une contrale de l'externée en quelques lignes, sachez qu'avec elle, tout est possible, vous pourrez par exemple automatiser l'arrosage de votre pelouse, l'éjection de zones à certaines heures (idéale pour la protection de bureau), simuler une présence par l'activation aléatoire de lumières, activer le chauffage dès que la température descendra en dessous d'une valeur de consigne, disposer d'une horloge parlante, etc... Vous êtes sûrement nombreux à avoir recherché une centrale de ce type sans jamais pouvoir en trouver ou à avoir envisagé d'

"SENTINEL" + chargeur, en kit (sans batterie): 1880 F "NATHALYS" seule, en kit: 990 F

Spécialement conçue pour la protection d'appartements et d'installations résidentielles, cette étonnante petite centrale vous surprendra par ses multiples fonctions ainsi que par sa simplicité de montage et d'utilisation. Jugez s'en par vous même: Technologie RISC, affichage sur écran LCD 1 ligne / 16 caractères, 1 zone temporisée ou instantanée, 3 zones instantanées, 1 zone 24h/24h, sorties relais pour sirène intérieure, extérieure, flash et transmetteur, chargeur intégré, mode test avec buzzer, Ajaction manuel et autematique du consultation de visualisation multifonction, entrée pour clef, clavier ou télécommande, annonce des défauts au passage en veille, mémoire alarme, etc... Livrée sans batterie, ni boîtier.

LYNX-5

La petite
centrale
qui dépote!



LYNX-5 , en kit... 598 F

Montée 890 F

LEXTRONIC 36/40, rue du Gal De Gaulle (RN4) / 94510 LA QUEUE EN BRIE Fèl: 45.76.83.88 Fax: 45.76.81.41 - Port: 40 F - Ouvert du mardi au samedi de 9 h - 12 h et 15h - 191

Mu Vision Vidéo Téléphone

Nouveau

Vidéo Téléphone Télésurveillance Prix de Lancement

Entrepreneurs, commerçants, particuliers, ne vous déplacez plus inutilement!

Aujourd'hui vous pouvez surveiller ce qui se passe chez vous, tout en étant à des kilomètres. C'est simple comme un coup de fil.

Prix incomparable: 6500 Fht


Caméra vidéo de surveillance: 1500 Fht!

Mu Vision c'est aussi une équipe qui développe et distribue une gamme complète de produits de vidéo sécurité et de vision industrielle : caméras, cartes d'acquisition d'images, détecteurs vidéo d'intrusion, moniteurs, quads, tourelles, fixations et boitiers de protection de caméras, matrices vidéo, liaison vidéo radio. ...

Nos prix, donnes a titre indicatif, peuvent etre modifies sans preavis. DOM-10M-etranger, consultez-nous

MU VISION

14, Esplanade de l' Europe 34000 MONTPELLIER Tél. : (16) 67 22 29 56 - Fax : (16) 67 15 03 16

Programmateur & Testeur Universel

Connectable sur la porte parallèle du PC. prouvé par Atmel, AMD, TI, NS, Microchip d'autres, il répond parfaitement aux besoins la duplication et de la programmation des coposants très diversifiés. Livré de base avec support DIP40 universel, des nombreux s

ports universels sont en option - ex PLCC44, PLCC68, 8 Eproms. Il posse la capacité de gérer jusqu'à 256 broches. Le fruit de sept années de déve perment par une équipe de 24 techniciens, vous bénéficiez d'une va gamme de composants au menu, mais aussi d'un offre de suivie par mis jour complète à un prix très avantageux (150f ttc actuellement). Alimentati 90-256v alternatif incorporée. Dimensions: 285 prof x 245 x 60mm. L'ense ble comprend: ALL07 module principale, le module DIP 40 universel, u carte parallèle d'imprimante, un câble DB25 1M, l'ensemble de disquette manuel. Prix 4600ht. Existe aussi le modèle ALL07PC - identique, mavec interface PC dédié (fournie) & alimenté par le PC: Prix 3 950ht.

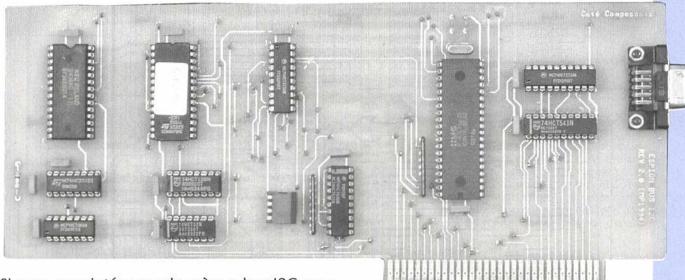
Hilo - V'Nice Emulateurs CPU.

Boîtier de base	3.487
Module 8031/C31, 8344,80c51fa,8032	1.445
Module 8051/c51/52/c52	2.790
Module Signetics 80c550	3.487
eviete d'autres madules Cianaties 90-FF2/-FF2/-F29/-7F2	

Lecteurs de codes à harres

en stylo (otique HP) connectable sur la prise clavier. Reconnaissance a matique des codes. 1200ttc.

PROGRAMMATEURS D'EPROMS haute vites


PROGRAMIMA I EURS I	DEPROMS haute vitess
Pour EPROMS 16K à 8Mb	
SEP-81AE 1 Support	1 285
SEP-84AE 4 Supports	1 674
Dual 8 entièrement auteneme eu Po	5 030
Quick-8 connecté sur PC, 8 supports	3 986
Carte programmateur PC 2716 - 275	512 648
Effaceurs d'eproms avec tiroir, tempo	orisateur, intérupteur de sécurité:
Capacité 18 Eproms	648

Tarif des nièces détachées	Driv TTO	Charnet 10bit sompatible NC2000	2
Cartes mères avec CPU		Ethernet 16 bit compatible NE2100 Interfaces	3
386-sx40 avec CPU	479 E	Carte ISA cache 512k-16Mo	12
486SLC-33 avec CPU		Multi I/O Vesa LB	
486SLC2 50 avec CPU Cyrix		Carte i/o VLB cache 512k-16M	12
386dx40 128k cache avec CPU		Contrôleur PCI 2s 1p 2 ddur 1 floppy	2
Cartes mères 486 sans CPU	7101	Cont ATBUS ISA 2s 1p 1j	
486sx/dx25/33/40/50 cache256 3 vlb	594 F		1
Cartes mères PENTIUM PCI	394 F	Cont SCSI Adaptec 1542CF	15
Pertium COM L COM 2006-170 PG	0 000 F	Lecteurs	3
Pentium 90MHz +32M+256k		FDD 1,44Mo	2
CM PCI + VLB 256k + CPU 486dx2 66		FDD 2.88Mo	8
C Mère PCI + VESA 256k cache	Committee of the Commit		•
Processeurs	10001	CD Rom Mitsumi + i/f	4
CPU 486S40	715 F	CD ROM dble vitesse avec i/face	
CPU 486SX25	461 F	CD ROW dole vitesse avec irrace	10
CPU 486sx33	401 F	District division of the second secon	
CPU 486sx40	640 F	Disques durs	
CPU 486dx33 Intel	1 096 F	Disque Mag/Optique Fujitsu 128Mo int	49
CPU 486dx40 UMC	615 F	Cartouche 128Mo	2
CPU 486dx2 50 Cyrix	927 F		8
CPU 486dx50 av rad PROMO	1 423 F	Syquest 105Mo AT bus interne	16
CPU 486dx2 66 avec ventilateur	1 278 F	Cartouche Syquest 105M	4
CPU 486dx 2 80 AMD	1 521 F	AT bus 210M	12
CPU 486dx4 75 Intel	3 066 F	AT bus 245M	12
CPU 486DX4 100 Intel	3 699 F	AT bus 340M	13
Radiateur + ventilateur CPU	47 F	AT bus 420M	15
CPU Pentium 60Mhz	3 180 F	AT bus 520M	18
	3 005 5	000 40.	1 0
CPU Pentium 66MHz CPU Pentium 90MHz	4 588 F	SCSI 1,75Go 3 1/2" Micropolis	77
Cartes Vidéo		Sauvegarde HP DAT 2Go	69
/GA Vesa L bus 1M 5424	517 F	Sauvegarde HP DAT 4Go	77
Carte video PCI ET4000W32T 1M	1 357 F	Cassette DAT 2-4Go	1
Cte SVGA VLB Cirrus 5428 1M ext 2M	532 F	Lecteurs de Codes à Barres	
Moniteurs		Stylo if clavier	12
S-VGA 14" 0,28mm	1 465 F	Stylo if RS232	12
Energy Star 15" 1280x1024 ni MPR2	2 544 F	EN-80 reader/writer	41
Smile 17" 0.26 1024x768 ni	4 394 F	Cit-oo loadel/illia	
Divere		memoires	
Grand tour 230 W 5x 5 1/4 et 3x 3 1/2"	694 F	SIM 4M x 9 70ns	11
Boitier Mini T	245 F	SIM 1M (3 chip) 70ns	2
ntel SatisFAXtion Modem/fax	769 F	SIM 4M 32 bits pour carte PCI	11
AX/modem 14200bds	1 403 F	SIM 8M 32 bits pour carte PCI	23
OOS 6,1 IBM	108 F	SIM 16M 32 bitspour carte PCI	45
MS DOS v6.2	The state of the s		

Tél 32 45 96 55 Fax 32 45 58 38 Lun à Ven 9h30 à 13h00/14h00 à 18h0

Espion (2) Pour BUS 12C

Si vous vous intéressez de près au bus I2C vous

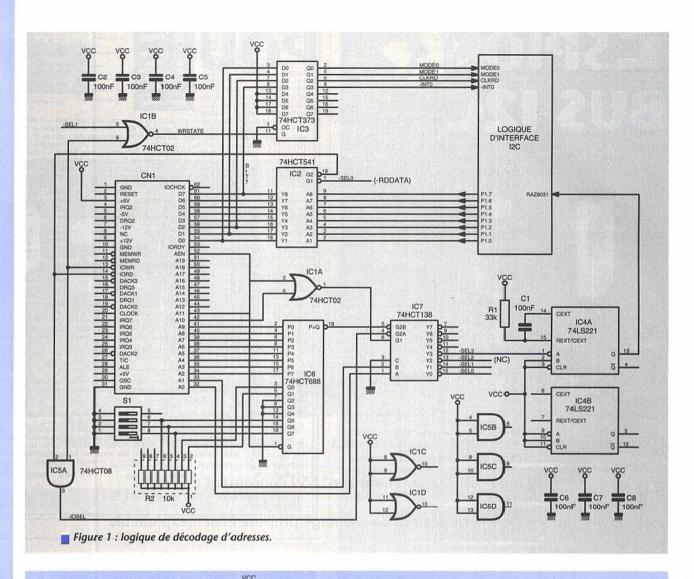
avez peut-être remarqué l'article paru dans le n° 559 concernant une carte espion pour bus I2C. Le mode étendu du montage proposé était inexploitable avec le bus standard d'un PC (BUS ISA). L'intérêt principal d'une carte espion étant à n'en pas douter de pouvoir analyser le fonctionnement du bus dans les moindres détails, il convenait que nous remédions à ce défaut de jeunesse.

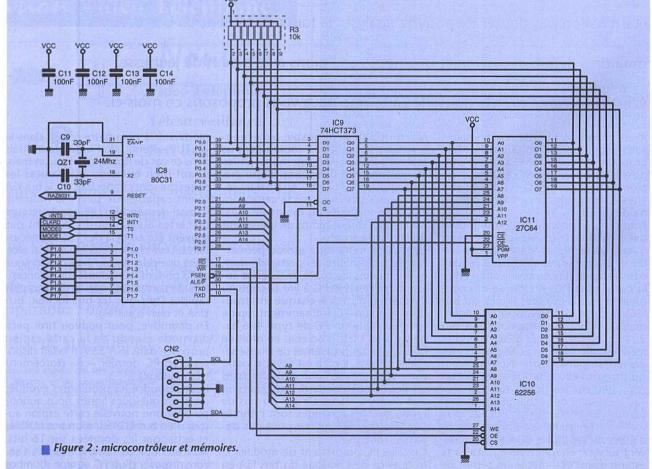
C'est chose faite avec la nouvelle carte que nous vous proposons ce mois-ci.

Avant d'aborder les schémas, revenons sur les points qui limitaient la carte proposée dans le n°559. La carte proposée était tout à fait capable d'espionner correctement un bus I2C à sa vitesse nominale, ceci même dans le mode étendu.

Pour rappel, le mode étendu se proposait d'enregistrer tous les changements d'états sur les lignes SCL et SDA du bus 12C à espionner. Le problème résidait dans le mode de communication entre la carte et le PC. A chaque changement d'état d'une des lignes du bus 12C, la carte espion proposée engendrait un signal d'interruption sur le bus du PC. Le PC se devait d'être suffisamment rapide pour venir lire la donnée présentée par la carte espion, avant qu'un nouveau changement d'état n'a l'ileu sur les lignes du bus I2C. Faut de quoi des échantillons étaient perdus par le PC. Sur un bus I2C à sa vitesse nominale, les changements d'états sur les lignes SDA et SCL peuvent survenir en moins de 4us. La carte espion ayant elle-même un temps de réaction non négligeable les événements se succédant à moins de 2 µs étaient filtrés. Les événements utiles étaient néanmoins assurés d'être pris en compte par la carte. Au final les interruptions générées par la carte pouvaient se succéder en moins de 4 µs. Autant dire que le temps de traitement du PC était compté.

La logique de la carte espion permettait de reconnaître les pertes de données en cours de route, mais cette solution obligeait le PC à lire le contenu de deux registres à chaque interruption. Avec un PC suffisamment rapide (par exemple un PC de type 486 cadencé à 66 MHz!) on était en droit de penser que les problèmes de vitesse seraient résolus. Il n'en est rien car notre carte était prévue pour s'installer dans un slot de bus standard, donc dans un slot de type «ISA». Or sur un bus de type «ISA» les échanges sont rythmés par une horloge qui ne peut pas dépasser 16MHz.


Certains PC permettent de modifier la fréquence de l'horloge du bus ISA en


modifiant le paramètre requis dans le «SETUP» étendu de l'ordinateur. Mais dans ce cas de figure, car il y a un mais, il faut bien entendu que toutes les cartes qui sont connectées sur le bus ISA soient capables de suivre la nouvelle vitesse demandée. Les constructeurs de cartes au standard ISA n'ont pas souvent été au-delà des 16MHz nécessaires. Leur choix n'étant pas aussi arbitraire que cela, puisqu'il est plus logique qu'ils portent leurs efforts sur la conception de cartes destinées à des bus plus rapides (tels que les bus locaux, bus EISA et bien d'autres).

En définitive, pour pouvoir tirer parti du mode étendu de la carte espion proposée dans le n°559, il fallait disposer d'un PC dernier «cri» (forcément très coûteux).

Pour résoudre les problèmes évoqués dans ces quelques lignes nous aurions pu bâtir une nouvelle carte espion autour d'un bus EISA ou d'un bus LOCAL, et échanger les données sur 16 bits. Mais au bout du compte il faudrait encore disposer d'un PC équipé d'un bus

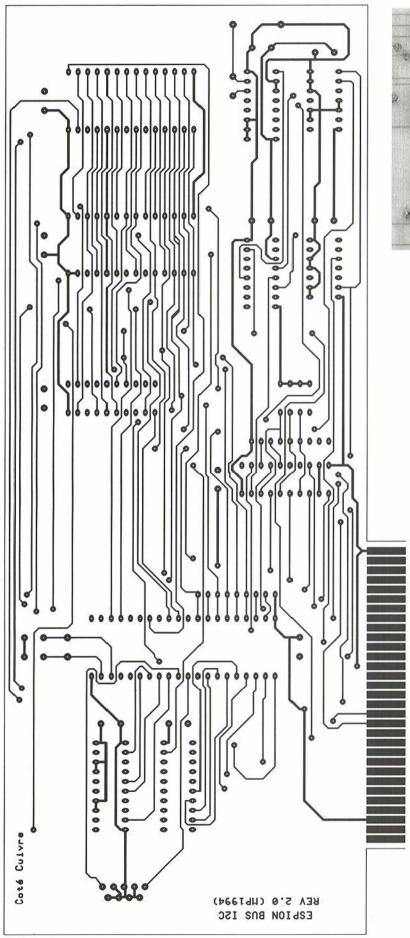
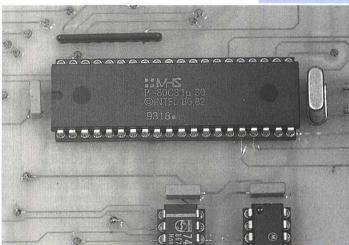



Figure 3

rapide et donc un PC encore un peu au-dessus de la moyenne.

La solution retenue pour la nouvelle carte espion, que nous vous proposons ce mois-ci, est beaucoup plus raisonnable. Vous pourrez même installer la nouvelle carte espion dans un bon vieux PC de type XT, même cadencé à 4,77MHz! Pour palier aux problèmes de vitesse, il suffit tout simplement de

disposer d'une mémoire tampon sur la carte espion. C'est alors la carte espion qui doit être suffisamment rapide pour suivre les évolutions du bus I2C. La communication entre le PC et la carte espion pourra ensuite être rythmée par le PC lui-même, sans problème de cadence.

Schémas

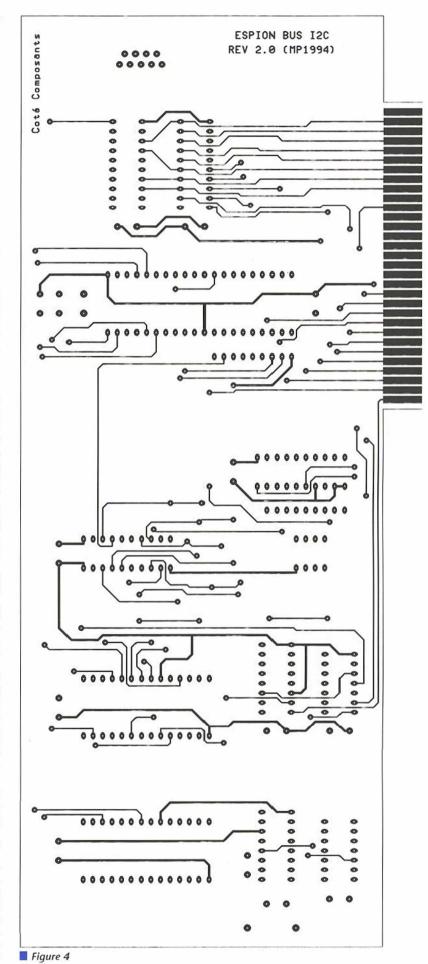
Les schémas de notre nouvelle carte espion sont reproduis en figures 1 et 2. En figure 1 on trouve la logique de décodage des adresses du bus de type ISA du PC. La porte CI1A et le circuit CI6 contrôlent le démultiplexeur CI7. Lorsque l'adresse présente sur le bus du PC coïncide avec les adresses configurées par la position des interrupteurs \$1, le circuit CI7 décode les bits A0 et A1 du bus du PC pour choisir la fonction demandée. Notez que la porte CI5A n'autorise le décodage réalisé par CI7 uniquement dans l'espace des entrées et sorties du PC. La même adres-se demandée dans l'espace RAM du PC n'activera pas notre carte, ce qui est heureux!

La sortie Y0 de CI7 (-SEL0 ou -RDATA) autorise le circuit CI2 à transmettre les données sur le bus du PC. La deuxième entrée de contrôle de CI2, à savoir G2, est connectée au signal -IORD du bus du PC pour garantir une sélection harmonieuse. Il est donc impossible d'écrire une donnée par mégarde à destination de CI2 (ce qui serait fâcheux pour CI2 ou pour les drivers du bus du PC).

La sortie Y1 de CI7 (-SEL1) est combi-née avec le signal -IOWR issu du bus du PC par la porte CI1B. La sortie de CI1B attaque l'entrée d'horloge du circuit latch CI3. Vous noterez que les données enregistrées dans le latch CI3 ne sont pas dans le même ordre que les données présentes sur le bus DATA du PC. Les sorties de CI3 seront destinées au microcontrôleur qui espionne le bus I2C. Le registre CI3 fournit le mode de fonctionnement demandé au microcontrôleur et contrôle la ligne d'interruption de ce dernier. Par rapport à la réalisation du n°559 vous noterez que la configuration du mode de fonctionnement de la carte est désormais possible par logiciel. Il ne sera donc plus nécessaire d'ouvrir le PC pour changer les switches de la carte

espion lorsque l'on souhaite changer de mode.

Enfin la sortie Y3 de CI7 commande le monostable CI4A pour générer le signal de remise à zéro associé au microcontrôleur. Vous noterez que le déclenchement du monostable est plus simple que pour l'ancienne version de la carte espion.

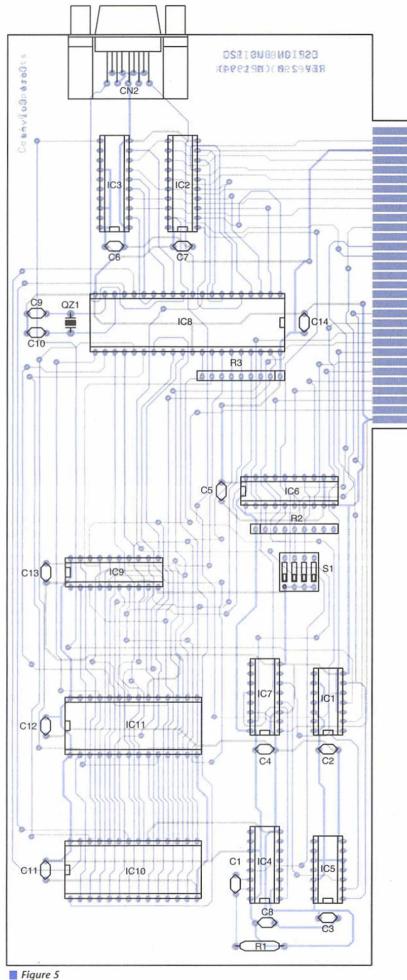

En contrepartie la carte espion ne démarrera que lorsque le programme du PC lui en aura donné l'ordre. Cette situation n'est pas gênante car la carte espion ne dispose d'aucun moyen de perturber le PC (aucune ligne IRQ utilisée). Ce n'était pas le cas de l'ancienne carte espion qui pouvait fort bien générer des interruptions vers le PC si l'initialisation du microcontrôleur n'était pas correcte.

La figure 2 dévoile le microcontrôleur CI8 et les circuits qui lui sont associés. L'adjonction de la RAM externe CI10 nous oblige à utiliser les ports P0 et P2 du microcontrôleur. Dans ce cas de figure il n'est plus utile de choisir un microcontrôleur avec une EPROM interne. Un modèle 80C31 fait fort bien l'affaire en ajoutant une EPROM externe. Ce choix est d'autant plus judicieux que nous allons avoir recourt à un modèle rapide, car la gestion de la RAM externe demande un peu plus de travaille au microcontrôleur. Il est en effet important, dans le mode étendu, que le microcontrôleur ait le temps de ranger les échantillons en mémoire et de gérer son pointeur sans perte de

La discrimination de l'espace adressé par le microcontrôleur se fait grâce aux lignes -PSEN, -RD et -WR. En contrôlant les sorties de Cl11 grâce à -PSEN et les sorties de Cl10 grâce à -RD et -WR il est donc possible de relier entre elles les lignes d'adresses de la RAM et de l'EPROM sans qu'il n'y ait de conflit. Le circuit d'horloge étant intégré dans le microcontrôleur il suffit de connecter le quartz QZ1 et les capacités associées C9 et C10 pour que le tout fonctionne

La ligne de RESET étant contrôlée par le monostable CI4A il n'y a rien à dire sur le sujet. La ligne -INTO sera utilisée effectivement comme entrée d'interruption. Quant aux lignes -INT1, -T0 et -T1 elles seront utilisées comme de simples entrées, pour contrôler le mode de fonctionnement du microcontrôleur. Notez que l'entrée -INT1 est utilisée comme signal d'horloge pour rythmer les échanges avec le PC. Ce sera au programme d'application sur le PC de contrôler cette ligne pour faire progresser la lecture du contenu de la RAM CI10.

Le nombre de ports du microcontrôleur qui restent disponibles pour l'utilisateur est quelque peu restreint dans ce cas de configuration. En définitive les lignes SDA et SCL, issues de CN2, sont connectées sur les port RX et TX du microcontrôleur. Bien entendu le port série intégré dans le microcontrôleur ne servira pas à gérer les lignes SDA et SCL (ce serait trop facile tout de même). Le port série sera désactivé de sorte que les lignes RX et TX seront utilisées comme des entrées et sorties normales.



RÉALISATION

La réalisation de notre carte nécessite un circuit imprimé double face. La vue coté cuivre est reproduite en figure 3 et le vue coté composants en figure 4. La vue d'implantation associée est visible en figure 5. Avec un peu de dextérité vous pourrez vous passer des trous métallisés, à condition de percer

les pastilles avec des forets de très

bonne qualité. Pour les traversées, qui sont nombreuses, il vous faudra souder de part et d'autre du circuit un petit bout de fil. Commencez par souder les traversées puisque certaines d'entre elles sont disposées en dessous des circuits intégrés.

Tous les circuits intégrés seront mon-

tés sur des supports de type «tulipe» pour vous permettre de souder les pattes du coté composants, là où cela est nécessaire. Pour certaines pattes, la soudure du coté composants nécessitera pas mal de dextérité. Mais si vous êtes soigneux vous y arriverez facilement. Vous noterez que certains condensateurs de découplage doivent être soudés aussi sur les deux faces du circuit. Lors de l'implantation prévoyez donc de les monter un peu plus haut sur pattes, pour pouvoir accéder au coté composants avec votre fer à souder. L'auteur réalise tous ces circuits deux faces sans trous métallisés de cette façon, alors pourquoi pas vous! Si par la suite votre carte semble ne pas fonctionner, avant de soupçonner les composants actifs du montage, passez en revue toutes les pastilles qui devraient être soudées du coté composants. Vous aurez peut-être les mêmes surprises que l'auteur.

Respectez le choix des composants indiqué dans la nomenclature. Respectez en particulier les critères de vitesse car notre carte doit fonctionner avec une horloge cadencée à 24 MHz minimum. Enfin ajoutons que le connecteur CN2 sera immobilisé par deux boulons montés dans les passages prévus à cet effet. Cette précaution ne sera pas inutile puisque le connecteur CN2 à de forte chance de subir de nombreuses manipulations de changement de câble. Vous devrez d'ailleurs fabriquer un câble adapté à la connectique par leguel passe le bus I2C que vous voulez espionner.

Utilisation de la carte Espion

Pour pouvoir utiliser la carte espion, vous devrez tout d'abord programmer une EPROM avec le programme dont le code est indiqué en figure 6. Si vous n'avez pas envie de ressaisir le code hexadécimal indiqué ici, vous pourrez naturellement le télécharger sur le serveur minitel (3615 code ERP). Vous pourrez aussi télécharger le programme d'application prévu pour piloter la carte à partir du PC, ainsi que tous les fichiers sources qui accompagnent notre maquette. Si vous n'avez pas la possibilité de télécharger ces fichiers, vous pourrez les obtenir en envoyant à la rédaction une disquette formatée accompagnée d'une enveloppe affranchie au tarif en vigueur pour le retour. Le programme d'application s'appelle «ESPI2C_2.EXE». La syntaxe d'appel du programme est relativement simple. Le seul paramètre à passer sur la ligne de commande d'appel du programme est l'adresse de base à laquelle répond votre carte. La figure 7 vous indique les adresses possibles en fonction de la position des micro-interrupteurs de S1. Notez au passage que la carte ne risque pas d'entrer en conflit avec les cartes standard d'un PC

La figure 8 vous indique quelle fonction de la carte espion est adressée en fonction de l'offset ajouté à l'adresse de base de sélection de la carte.

Après être remise à zéro, la carte espion se positionne dans le mode qui lui

est demandé par le PC. Le programme d'application se doit donc de placer la valeur souhaitée dans le registre CI3 avant d'effectuer le RESET. Le microcontrôleur de la carte espion fourni sur le port P1 une valeur qui indique dans quel état la carte se trouve. Le PC peut donc contrôler que les ordres qu'il passe sont bien reconnus par la carte espion.

Vous pourrez donc contrôler manuellement le bon fonctionnement de votre carte via le programme DEBUG du DOS de votre PC. La figure 9 vous indique la liste des modes possibles tandis que la figure 10 vous indique les codes de retour fournis pas le microcontrôleur.

La commande d'interruption n'est pas active lorsque la carte est dans le mode d'attente. Les interruptions sur la ligne-INTO ne sont autorisées par le microcontrôleur que lors des phases d'acquisition ou de lecture. Notez que lorsque la phase d'acquisition se termine d'ellemême (lorsque la fin du buffer est atteinte) le microcontrôleur désactive les interruptions. Il en va de même lors de la lecture du contenu de la RAM.

Lorsqu'une d'interruption est demandée au microcontrôleur, ce dernier place la valeur 55H sur le port P1 pour indiquer l'acquittement de l'interruption. Le microcontrôleur attend alors que la ligne d'interruption repasse au niveau haut avant de repasser en état d'attente. Avant d'accepter une nouvelle commande, la carte espion attend de repasser dans le mode d'attente. Si vous interrompez une commande grâce à la commande d'interruption pensez à écrire la valeur 80H dans le registre de sélection de mode pour terminer l'interruption, et repasser dans le mode d'attente.

Le programme «ESPI2C_2» vous propose un petit menu relativement simple. Notez que le programme peut interrompre la carte espion lors des phases d'acquisitions, puisque le microcontrôleur active son entrée -INTO dès le démarrage de ces modes de fonctionnement. Cette possibilité est importante car vu la taille du buffer de

:10000000124FF0164FFFFFFFFFFF32FFFFFFFF :10001000FFFFFF32FFFFFFFFFFFFF32FFFFFF8A :10002000FFFFFF327587807530FF75317F753200B5 :10003000759000758133D2A8C2AFE532B40009E5EE :10004000B05430B4001080F2E5B05430B400EB7519 :100050009000F53280E4F532B4100201CCB42002F5 :1000600001852161E590B40108E582F530E583F56D :100070003175905530B2FDC289900033E582C0E001 :10008000E583C0E032759001907FFFD2AFE5B0F01C :100090001582B5B00280FBE5B0F0D582F5D583F2CC :1000A000C2AF7530007531007590020133E5B0B50F :1000B000B00480FB0000E5B0F0D582F8D583F7C22C :1000C000AF75300075310075900201337590019065 :1000D0007FFFD2AF30B1FD20B00530B0FD80F520FC :1000E000B0FD20B1FD30B1FDA2B03320B1FD30B183 :1000F000FDA2B03320B1FD30B1FDA2B03320B1FD7F :1001000030B1FDA2B03320B1FD30B1FDA2B033203B :10011000B1FD30B1FDA2B03320B1FD30B1FDA2B0D0 :100120003320B1FD30B1FDA2B033F020B1FDD58256 :1001300010D5830DC2AF7530007531007590020186 :100140003330B1FD20B1FD30B1FD30B00A30B09296 :1001500020B1FA7401809720B08520B1FA74008034 :100160008D907FFFD2AF317EF5903190400CE0F55D :10017000903190D582F0158380ECC2AF0133E53128 :10018000B58309E530B582047420D3227410C322EC :1001900030B3FD20B3FD22204573FFFFFFFFFFBB :1001A000FFFFFFFFFFFFFFFFFFFFFFFFFF : 00000001FF

Figure 6 : vidage de l'EPROM.

la carte espion, il y a fort à parier que vous voudrez interrompre l'espion avant que le buffer ne soit plein.

Une petite remarque au passage s'impose. Lorsqu'une phase d'acquisition est interrompue, le microcontrôleur stocke la valeur de son pointeur sur la RAM pour connaître l'adresse du dernier échantillon enregistré. En réalité le pointeur était déjà positionné sur l'adresse cible pour le prochain échantillon. En définitive selon le mode et l'instant où survient l'interruption, le dernier échantillon qui sera transféré dans le buffer du PC ne sera pas forcément valide.

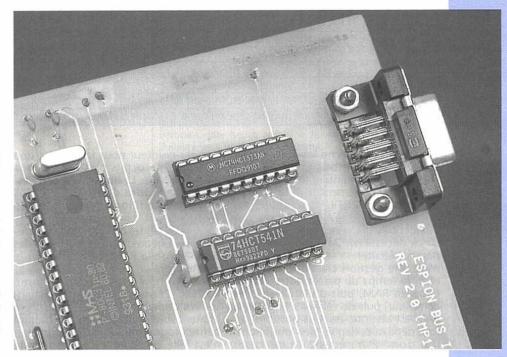
Par exemple dans le mode standard, si
vous interrompez l'acquisition lorsque
les lignes SDA et SCL sont au repos (à
état haut, après une condition de
STOP), le dernier échantillon sera tou-
jours valide. Par contre si vous inter-
rompez l'acquisition au cours d'un
transfert d'un octet sur le bus I2C, le
dernier octet indiqué en RAM sera in-
défini. Par contre dans le mode éten-
du, que vous interrompiez l'acquisition
au beau milieu du transfert d'un octet
sur le bus I2C ou bien après une condi-
tion de STOP, le dernier échantillon en
RAM sera indéfini. A moins que vous
ayez rempli complètement la RAM, au
quel cas le dernier échantillon sera cor-
rect.

Si ce point reste obscur dans votre esprit, consultez le contenu du fichier source du programme du microcontrôleur. Quoi qu'il en soit, si vous doutez de la compréhension de ce point, dites vous que le dernier échantillon affiché n'est pas forcément valide.

Passons maintenant à l'utilisation du programme «ESPI2C_2». Le programme d'application du PC affiche suffisamment de messages pour vous guider aisément dans son utilisation. La première option du programme ne vous sera pas d'une grande utilité si la carte espion répond normalement aux sollicitations du programme. Cette option est restée d'une version de test. Voilà, vous savez tout.

L'option 2 du programme passe la carte espion dans le mode standard et l'option 3 dans le mode étendu. Comme nous l'avons déjà indiqué, vous pourrez stopper l'acquisition des données avant que la fin du buffer ne soit atteinte. Une fois que l'acquisition

51-3	51-2	51-0	Adresse de sélection	Paramètre pour le programme «EPSI2C_2»
ON	ON	ON	300H à 303H	768
ON	ON	OFF	304H à 307H	772
ON	OFF	ON	308H à 30BH	776
ON	OFF	OFF	30CH à 30FH	780
OFF	ON	ON	310H à 313H	784
OFF	ON	OFF	314H à 317H	788
OFF	OFF	ON	318H à 31BH	792
OFF	OFF	OFF	31CH à 31FH	796


Figure 7

Offset à ajouter à l'adresse de base de sélection	Fonction adressée	Lecture/Ecriture
0	lecture des données	lecture uniquement
de viene 1 maria a pur	sélection du mode	écriture uniquement
2	inutilisé	
3	reset	lecture ou écriture

des données souhaitées est terminée, la carte espion est replacée en mode d'attente. À cet instant précis, le buffer du PC ne contient pas encore les nouvelles données tant convoitées. Il faut que le contenu de la RAM de la carte espion soit chargé dans la RAM du PC via l'option N°4. Vous pouvez donc examiner des données différentes de celles emmagasinées dans la carte espion. Il faudra penser à passer par l'option 4 du programme après une phase d'acquisition par les commandes 2 et 3 du menu pour pouvoir examiner le bon contenu.

Pourquoi avoir utilisé un buffer indépendant du coté du PC? Tout simplement pour pouvoir examiner des données enregistrées précédemment dans un fichier. Vous pouvez relire le contenu du buffer la carte espion à tout moment

Notez que des données acquises en mode standard peuvent être visionnées via l'option 5 du programme. Bien entendu, dans ce cas là, le résultat affiché ne correspondra à rien, l'inter-

Contenu du registre de sélection de mode	Action obtenue
80H	Passage en état d'attente (à utiliser avant RESET de la carte)
81H	Mode Espion Standard
82H	Mode Espion Etendu
83H	Lecture de la RAM de la carte Espion
84H	Génération du signal d'horloge pour lire le contenu de la RAM
00H	Interruption du microcontrôleur

Figure 9

prétation graphique du buffer étant dédiée au mode étendu.

A propos du buffer de la carte espion. vous pensez peut-être que vous disposerez des 32768 octets de la RAM. II n'en est rien. La gestion du pointeur sur la RAM par le microcontrôleur est réalisée de façon un peu particulière. Cette situation est due à la vitesse d'exécution nécessaire dans le mode étendu. Rappelons que le microcontrôleur doit être capable d'enregistrer

B.P.48 - 94472 Boissy-St-Léger Cedex - Tél. (1) 45.99.22.22 - Fax (1) 45.98.38.15

Marseille: Tél. 91.94.15.92 - Fax 91.42.70.99

UTILISATION AISEE - PRIX ABORDABLES

ICAP/4 est l'outil indispensable à tout concepteur électronicien: ce progiciel permet la simulation de tout type de circuit électronique, et comprend, dans un environment intégré et facile à maîtriser, l'entrée de schémas, le simulateur mixte analogique/digital, les bibliothèques de composants, l'oscilloscope logiciel permettant l'affichage et le traitement des courbes après simulation.

Pour toute information, contactez notre représentant en France EXCEM, 12, Chemin des Hauts de Clairefontaine 78580 Maul tél: 34 75 13 65 fax: 34 75 13 66 intusoft Documentation et disquettes de démonstration sur demande

Lecture du port P1	Etat de la carte espion		
00H	Attente d'une commande		
01H	Espion actif		
02H	Fin de la RAM atteinte lors de l'acquisition		
10H	Lecture de la RAM en cours		
20H	Fin de la RAM atteinte lors de la lecture		
55H Interruption prise en compte (attente de la commande			

Figure 10

dans la RAM externe les états qui se succèdent sur le bus I2C en moins 4 µs. Or le seul pointeur utilisable pour adresser correctement la RAM externe est le pointeur DPTR. Vous pourrez vérifier dans les DATA-BOOKS que les instructions qui concernent le registre DPTR nécessitent 24 cycles d'horloge pour s'exécuter.

Avec une gestion classique du pointeur, le temps de placer notre échantillon en RAM, puis d'incrémenter le compteur, puis de vérifier si la fin de la RAM est atteinte, les 4 µs possibles seront dépassées depuis bien longtemps. Il a donc été nécessaire de ruser quelque peu. En définitive la solution retenue est indiquée dans l'extrait du code source reproduit en figure 11. Notez la gestion peu orthodoxe du pointeur en caractères gras. Et ça marche.

La gestion du pointeur démarre avec l'adresse hexadécimale 7FFH. Le pointeur est décrémenté normalement jusqu'à l'adresse 7F01H. Puis subitement au lieu de passer à l'adresse 7F00H, la gestion du pointeur progresse directement à l'adresse 7E00H puis à l'adresse 7EFFH la fois d'après. On perd donc un premier octet sur la derniere page en RAM. Cette progression du pointeur un peu étrange va se poursuivre jusqu'à l'adresse 101H. C'est alors que les choses se gâtent. La routine passe ensuite de l'adresse 0101H à l'adresse 0000H, où l'on considère que la fin de la RAM est atteinte. En définitive la routine de ges-

tion du pointeur nous fait perdre une page de 256 octets plus l'octet de la première page. Le buffer de la carte espion contiendra donc tout au plus 32511 échantillons. Mais c'est déjà bien suffisant, car pour dépouiller le contenu d'un tel buffer il faut du courage. Fort heureusement la lecture des données de la RAM se feront dans le même ordre.

Les options 7 et 8 du programme «ESPI2C_2» vous permettent d'échanger les données avec des fichiers. Les fichiers sont traités en mode binaire par le programme. Aucune distinction n'est faite entre le mode étendu et le mode standard dans la gestion des fichiers. Ce sera donc à vous de savoir ce que contiennent vos fichiers.

Notez que pour le mode standard, le contenu d'un fichier sera la succession des octets qui se seront présentés sur le bus I2C. Aucune information n'est enregistrée concernant l'état du bit ACK du bus I2C, contrairement à la version précédante de la carte espion. Pour le mode étendu le contenu du fichier sera la suite des états qui se seront succédé sur le port P3 du microcontrôleur. Seuls les bits 0 et 1 ont une signification. Les autres bits correspondent au mode et aux signaux -RD et -WR du microcontrôleur. Le bit 0 de chaque octet du fichier correspondra à l'état de la ligne SDA et le bit 1 correspondra à l'état de la ligne SCL enregistré au même instant. Si vous voulez traiter de tels fichiers avec un programme de votre cru, il vous suffira de masquer les bits 2 à 7 lors de la lecture du contenu des fichiers.

Précisons que les données enregistrées par la carte espion sont livrées sans indication temporelle, vous l'aurez peut être deviné de vous même. La carte espion n'enregistre que la succession des changements d'état du bus I2C. Si le bus I2C que vous espionnez reste au repos pendant des heures, vous n'enregistrerez aucun nouvel échantillon avec la carte espion. La carte espion ne se comporte donc pas comme un analyseur logique, même si l'interprétation graphique proposée par le pro-gramme «ESPI2C_2» laisse à penser le contraire. Ceci explique pourquoi, avec l'interprétation graphique du programme «ESPI2C_2», vous aurez quelquefois l'impression que les fronts du signal d'horloge se succèdent à des intervalles de temps irréguliers. C'est simplement parce que la ligne SDA aura changé de niveau avant la ligne SCL.

Vous voici maintenant en mesure de contrôler dans le détail ce qui se passe sur vos bus I2C.

P. MORIN

NOMENCLATURE

Résistances :

 $R1:33k\Omega$

R2,R3 : Réseaux résistifs 8 x $10k\Omega$ en boîtier SIL.

Condensateurs:

C1,C2,C3,C4,C5,C6,C7,C8, C9,C10: 33pF C11,C12,C13,C14: 100nF

Circuits intégrés :

IC1 : 74HCT02 IC2 : 74HCT541 IC3,IC9 : 74HCT373 IC4 : 74LS221

IC5 : 74HCT08 IC6 : 74HCT688 IC7 : 74HCT138

IC8 : Microcontrôleur Matra P-80C31-25 (25MHz) IC10 : RAM 62256,

temps d'accès 200ns IC11 : EPROM 27C64, temps d'accès 200ns

Divers:

S1 : Bloc de 4 micro-interrupteurs en boîtier DIL.

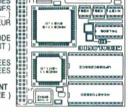
CN2: Connecteur DB 9points, femelle, à monter coudé sur Cl. Par exemple HARTING référence 09 66 113 7601 QZ1: Quartz 24MHz

************* espion en mode étendu enregistre tous les états successifs extended: ;init du mode extended 0085 75 9001 .2 mov sortie, #FLAGWAIT; 0088 90 7FFF .2 mov dptr,#RAMCOUNT 008B D2 AF .1 setb ea 008D E5 B0 a,p3 ;valeur de reference .1 mov 008F F0 .2 movx @dptr,a ;enregistre en ram ;decremente id faible du pointeur 0090 15 82 .1 dec dpl 0092 B5 B002 .2 ext0: cine a,p3,ext1 0095 80 FB .2 ext0 simp 0097 E5 B0 .1 ext1: mov 0099 F0 movx @dptr,a ;enregistre en ram ;decremente le poids faible du pointeur 009A D5 82F5 .2 djnz dpl,ext0 ;boucle si la fin n'est pas atteinte 009D D5 83F2 dph,ext0 .2 djnz ;ici la fin de ram est atteinte (dptr=0) 00A0 C2 AF clr 00A2 75 3000 .2 dpla,#0 mov 00A5 75 3100 .2 mov dpha,#0 00A8 75 9002 .2 sortie, #FLAGFIN ; indique fin de l'acquisistion mov 00AB 01 33 ajmp Figure 11

MECALOGIC DEVELOPPEMENT SHELL (c) 1994 XEMULALL 3 TOR
[S] [Y] [X] [BAB] (SXHINZVC) (LKN)WI XIC [1]NONE [2]NONE [3]NONE [7]TRACE
00FF FFFF FFF 06FF 11110000 BB 30 [W]HINNOW HEK-NOWE [0]OTHERS
BEOOFF LOS #800FF INITIALISATION STACK SYSTEME
HER ASM [CTRL] [L]LAMBLES DEGREE ROOS EN BERLY FERROM ESCICLOSE [CRIFIX [MOVE WITH ARROWS]

CONCEPT EMULATION ENTERREE EMBEDDED EMULATOR PERMET L'ECRITURE, LA E AU POINT, LES CORRECTIONS SUR SITE ET L'EVOLUTION DU LOGICIEL CTEMENT SIR L'APPLICATION CANG ALVEILINE MANIBULATION DE CIRCUTTO OU SONDES, DIRECTEMENT PAR LA RS232 D'UN PC

PLICATION DECONNECTEE EST IMMEDIATEMENT AUTONOME
:ALOGIC CONCEPT PEUT REALISER L'INTEGRATION D'INTERFACES SPÉCIFIQUES


VOTRE APPLICATION ----

31 LIGNES D'ENTREES SORTIES BUS STI PUUM PEHIPHEHIE SERIE (MAXIM MOTO NS ...) WATCHDOG, MRESET, PRESET, IRQ, XRQ, HORODATEUR

8-BIT BUS MULTIPLEXE ET DEMULTIPLEXE PREDECODE CPU HC11 (X Y A+B=D S P CCR OPERATIONS 16-BIT)

32K EEPROM - RAM - EPROM PROGRAMME/DONNEES + 8K RAM - EPROM PROGRAMME/DONNEES

FONCTIONS EMBEDDED EMULATOR POUR MISE AU POINT DIRECTE PC (RS232/DB9 OPTOISOLEE)

311EME (sans mémoires): 799 F HT à l'Unité 311EME/28 avec 8K Ram Zéropower: 904 F UHT 311EME/E2Z8: + 32KEEPROM: 1130 F UHT

311EME par 10 pièces : 650 F HT

Package de développement avec MHC811EME/E2Z8 Package de development avec microstration :

+ Manuel de référence + Editeur source + Assembleur direct objet très rapide + Débugger direct module + câble RS232 + bloc alimentation secteur : 2400 F HT

Version Windows et Compilateur C en développement

MECALOGIC Concept BP24 13540 Tél 42 92 26 44 DOCUMENTATION SUR DEMANDE Fax 42 92 26 45

Positionnement par satellite Récepteur GPS en KIT

Le récepteur DELTA GPS LCD est un appareil permettant d'exploiter tion et de tempe disponibles sur le système "Olubal Positioning System". Ce système, basé sur un réseau de satellites, a été mis en place par le département de la défense des Etats-Unis. La réception de 3 ou 4 satellites sur les 5 à 11 visibles au dessus de l'horizon suffit pour obtenir toutes les secondes une position à 100 mètres près.

Un des microprocesseurs intégrés traite les informations en provenance des satellites et les présente à l'utilisateur sur l'afficheur LCD. Les informations affichées sont latitude, longitude, altitude, vitesse, cap. vitesse, veπicale, date, heure, précision de mesure, nombre de satellites reçus, cap à suivre vers un point programmé

KIT complet 4590F ttc

Antenne support magnétique Composants CMS presoudés

Voiture, Avion, Planeur, Deltaplane, Bateau, etc...

Aide à la navigation Relevé de trajectoires

- * Affichage de 4 lignes de 20 caractères avec rétro-éclairage réglable.
- * Différents modes d'affichage par système de fenêtres défilantes.
- * Modes Terrestre, Marine ou Aviation (Km, Nm ou Pieds).
- * Interface standard RS-232 pour connection à ordinateur.
- * Enregistrement des parcours (2700 points, 1 à 60 secondes).

 Télévidage des parcours pour exploitation sur ordinateur.
- * 60 Points de Virage ("Waypoints") programmables.
- * Affichage du cap à suivre par barre de tendance.
- Variomètre sonore (indication de vitesse verticale)
- * Programmable en mode économie d'énergie (mesure 1 à 5 secondes).

医多种性 医多种性 医多种性 医多种性 医多种性

Technologie de pointe Rockwell Telecommunications.

et toujours

le Labo

Hobby...

- 100% compatible avec le logiciel de cartographie WAY de Loxane sous Window
- Afficheur déporté (2m) en option.
- * Existe aussi sans afficheur pour PC

Documentation sur demande Spécifications et prix, donnés à titre indicatif, peuvent être modifiés sans préavis

31 Bd Victor HUGO 77220 GRETZ

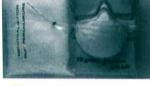
Tél: (1) 64 06 40 19 Fax: (1) 64 06 40 28

LABO 2 FACES A VIDE

PROFESSIONNEL

'incontournable DAO CIAO® VERSION 2

us de 100000 utilisateurs


Version monoposte 903F Version multiposte (10) 2700F TT Module de perçage 397F

(perceuse numérique)

Version établissement 2490F TTC cé du plan d'implantation, du typon nple et double face, duplication de circuit, dossier de fabrication ... tie sur imprimantes, laser, traceurs

T QUI C'EST LE N°1 Cit de neutralisation

u perchlorure de fer

• 500 grammes de neutralisant 10 gants jetables • 3 filtres tissus masque • 1 notice. Utilisable pour itres de perchlorure usagé environ

rix TTC

STOP AUX CANALISATIONS PERCÉES ET À LA POLLUTION

3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5

rix départ magasin chez tous les listributeurs CIF tarif au 01/04/94

FINDER MDS

BASE DE DONNÉES

34 000 composants - 40 000 fiches techniques - Recherche par noms, par fonctions ou par équivalences.

750^F HT/monoposte

GRAVEUSE VERTICALE

LA SEULE, en basse tension

Normes de sécurité NF C15-100 Format utile 200x300mm. Pince pour plusieurs petits circuits. Pompe et alimentation integree basse tension.

LA SECURITE!

Machine à graver

Avec thermotmètre Chauffage réglable avec voyant

COMPAREZ!

Chassis à insoler U.V (kit) (P) (D)

- Format utile 200 x 300 mm - Avec - Avec inter - Starters démontables...

Premier cadeau:

1 logiciel PAD'S - tourne sur PC - Saisie de shéma, placement, routage 100 % automatique - Deuxième Cadeau: 1 kit de neutralisation pour perchlorure voir descriptif ci-contre

Prix catalogue 7616TC

Promo

1

ATTENTION CES PETITES MACHINES **NE SONT PAS AUX NORMES EDUCATION NATIONALE.**

Machine à graver en continu, modulaire

- Gravure (temps de gravure 2 minutes), rincage développement en Format 250 mm - Vitesse réglable.

RENCONTREZ UN FABRICANT: 6000 références 150 types de machines

CATALOGUE E6 contre 11,20 en timbres fs.t.c. pratiqués (au 01/02/94) chez les distributes

vacuomètre Format utile 235 x 400 mm

Chassis

LIVRÉ AVEC :

- 1 jerry de perchlorure suractivé pour 2 pleins • 2 détachants pour perchlorure
- 10 gants jetables 1 bac de développement • 2 révélateurs positifs • 1 stylo de retouche • 10 peel film • 1/2 litre d'étain chimique • 5 époxys présenprésensibilisées 1 F 100 x 160.

Prix catalogue Promo

8057TTC

11 rue Charles Michels 92220 BAGNELIX Tél: (1) 45 47 48 00 Fax: (1) 45 47 16 14

Altai France déménage


Avec près de 6000 références au catalogue général, entreposées sur 2700 m² de locaux modernes et fonctionnels, Altai France se positionne comme un des distributeurs disposant de l'un des stocks les plus importants de France. Ses trois années d'existence ont vu les équipes commerciales, administratives et marketing de l'entreprise se renforcer pour mieux répondre aux attentes du marché.

Pour illustrer nos dires, Altai France a lancé en septembre une nouvelle ligne de produits d'électronique embarquée, la gamme Auto Soundlab.

Par ailleurs, afin de mieux informer son réseau de revendeurs, Altai France vient de créer une «newsletter» présenter les nouveautés des différentes familles électroniques aux professionnels.

Nouvelle adresse : **Altai France** ZI Paris Nord II 70, rue de la Perdrix. **BP50238 Tremblay-en-France** 95956 Roissy CDG Cedex Tál.: (1à) 48.63.20.92

Fax: (1) 48.63.09.88

Valise d'accessoires

de câblage

Richco commercialise une valise d'accessoires de câblage pour l'assemblage, la fixation et la protection des câbles et des circuits imprimés.

Cette valise contenant serre-câbles, clips, entretoises, passe-fils, rivets... permet à l'utilisateur d'Identifier Immédiatement les pièces dont il a besoin pour ses montages électroniques.

Pour tout renseignement complémentaire, contacter:

RICHCO Franco **ZA des Clotais** 61, rue Jean-Jaurès 91160 Champlan Tél.: (1) 69.34.78.54

Un régulateur de tension

original : le LR645

Ce circuit inédit de Supertex assure la régulation linéaire d'une tension redressée comprise entre 15 V et 450 V et delivre une tension régulée de 8 à 12 V/30 mA crète. Ses principales caractéristiques électriques sont :

- Régulation ligne : 0,1 mV/V.
- Régulation en charge : 50 mV/mA.
- Réjection du bruit d'entrée : 60 dB. Courant de repos : 100 nA.

- Courant concommé : 50 µA. Présenté en boîtier TO-92, SOT-89, PDIP-8, SO-8, TO-220, ce régulateur de par ses caractéristiques s'adresse à de multiples usages tels que :

- circuit de démarrage d'une alimentation à découpage secteur.

circuit régulateur pour alimentation série à secteur universel (24V à 272V AC).

Alimentation «off-line» économique éliminant le transformateur abaisseur, idéal pour alimenter des équipements

à usage domestique. Interrupteurs de proximité.

Contrôle/Pilotage à distance de lampes électriques.

- Alimentation de minuteurs, horloges, moteurs, relais électriques utilisés dans divers produits blancs à usage domestique.

Ces régulateurs sont disponibles chez :

Micro Puissance. Immeuble FEMTO 1, avenue de Norvège-ZA de Courtaboeuf - BP 79 91943 Les Ulis Cedex

Tél.: (1) 69 07 12 11 Fax: (1) 69 07 67 12

LR6 Used for SMPS Start-Up +15V to 450V VIN LR6 or CMOS PWM IC GND N

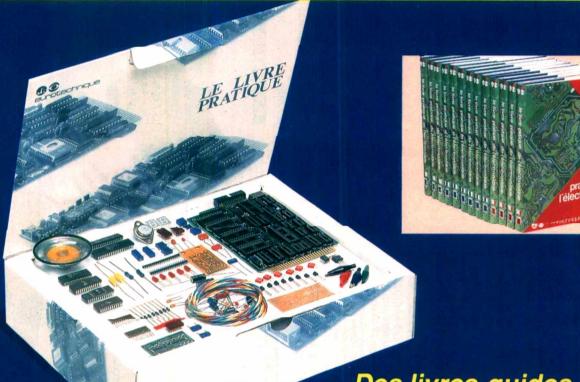
Procédé de codage

haute sécurité

Depuis quelques années, la sécurité a fait un grand pas en avant surtout grâce à l'électronique. Aujourd'hui, c'est un autre pas en avant qui est franchi avec un procédé de codage qui bouscule les principes établis. Reposant sur un principe original de telesynchronisation, il permet la génération en temps réel d'un code dont tous les paramètres sont aléatoires, et qui est cependant authentifié et porteur d'informations.

Susceptible d'être appliqué entre autres au cryptage et à l'authentification de signaux vidéo acheminés par voie filaire ou hertzienne, au contrôle d'accès et aux télécommandes de sécurité, ce procédé est principalement destiné à sécuriser les liaisons au sein des systèmes d'alarme et de télésurveillance. Il trouvera sa place chaque fois qu'il sara nécessaire de transporter des informations d'état en milieu sensible. Les sites à hauts risques tels que centrales nucléaires, établissements bancaires et musées constituent des hôtes privilégiés.

Le système génère de façon autonome tous les paramètres, y compris l'authentification du code. L'ensemble de ses caractéristiques permet d'atteindre un très haut degré de sécurité autorisant l'emploi de lignes apparentes en éliminant toute possibilité de simulation, même par des moyens informatiques, et permettant de s'affranchir de complicités internes aux établissements protégés. Dans le cas type de la protection d'une liaison bifilaire entre capteurs et centrale de protection périmétrique, ce procédé de codage confère à une installation le même degré d'inviolabilité de l'intérieur que de l'extérieur des locaux.


Ce procédé qui fait l'objet d'un brevet peut être mis en œuvre de façon autonome au sein d'un système modulaire destiné à la protection générale et multizones d'un bâtiment, ainsi qu'en complément d'un système d'alarme classique sous une forme plus compacte, sans nécessiter un nouveau câblage. Sous cette forme compacte, ce dispositif de sécurité de haut niveau sera accessible au marché des maisons individuelles.

Pour de plus ampies informations, s'adresser à :

M. Philippe Roubal 224, rue Hélène Boucher 69400 Villefranche-sur-Saône Tél.: 74.62.00.63

L'ELECTRONIQUE ET LA MICRO-INFORMATIQUE SUR LE BOUT DES DOIGTS

Des coffrets pratiques de matériel

Dans tous les domaines, la pratique est indispensable pour évoluer rapidement. C'est pourquoi, EUROTECHNIQUE vous propose une série de coffrets pratiques de matériel : 13 pour l'électronique ou 16 pour l'électronique digitale et le micro-ordinateur. Débutants ou initiés, ce matériel de pointe vous permettra d'appliquer vos connaissances et de réaliser de façon progressive des appareils de plus en plus sophistiqués (appareils de mesure, centrale d'alarme, micro-ordinateur).

Des livres-guides très détaillés

Spécialement conçus pour assurer la réussite de tous vos montages, ces livres-guides pratiques vous séduiront immédiatement. Toutes les notions théoriques fondamentales y sont expliquées, dans un langage clair et accessible à tous, par des ingénieurs et des techniciens hautement spécialisés. Abondamment illustrés de nombreux schémas, vous y trouverez également toutes les indications détaillées vous permettant de réaliser et de réussir vos montages.

Une superbe collection que vous serez fier de posséder dans votre bibliothèque et que vous pourrez consulter à tout moment.

Renvoyez - nous vite ce bon

BON POUR UNE DOCUMENTATION GRATUITE à compléter et à retourner à EUROTECHNIQUE - Rue Fernand Holweck - 21000 DIJON Je désire recevoir gratuitement et sans engagement de ma part votre documentation sur : LE LIVRE PRATIQUE DE L'ELECTRONIQUE LE LIVRE PRATIQUE DE L'ELECTRONIQUE DIGITALE ET DU MICRO-ORDINATEUR	09254
Nom Prénom Prénom Ode Postal Ville	

PCUR LA MAISON POUR LA MAISON

GROOM REONDEUR TELEPHONIQIE à synthèse de parole

Durée d'un messaje : 16 s (extensible di 32 s par rajout d'un 15D-116). Micro d'enregiistrement intégré - Alimentatin à prévoir : 8 à 25 V DC ou AC.

Une réalisation Selectronic

Le KIT complet version 6 sec. (sans alm) 111.3300 Fourni avec bottier et fae avant auto-collante gravé	oim) 111.3300 to-collante gravée, o	333,05 F HT rdon et pri	395,00° TIC
Bloc alim. secteur poir do	111.0694	29,51 F HT	***
Bloc alim. 9V PRO	111.4175	80,10 F HT	95,00° TIC
L'ISD 1016 supplémenaire	112.4173	75,04 F HT	89,00°TTC

H.F. CODEE

ivrés prêt à l'emploi, ce ensembles vous permettrons e réaliser très rapidement et rès simplement une foction télécommandée (uvertrer de portait, allumage de mme, darme, etc...) ave codage de sécurité. Technologe SAW (résonateur à ondes e surface) calibré en usne. Emetteur miniature type prote-cles.

IX / RX 301 Alocide 1 canal - Codage sur 12/15 par ponts de soudure. Récepteur miniature aliventé sous 12/DC.

Modèle un canál extensble à 2 canaux. Sortie à collecteur ouverou sur relais (en option). Codage par dipsritch. Récepteur universel (alim. 9 à 24 VA(ou 12 à 40 VDC). TX / RX 103

necessires pour transfor

111.4466 Emetheur supplémentae pour TX/RX 001 L'ensemble Em. + Rec. TX/RX 001

TRANSMETTEUR TELEPHONIQUE INTELLIGENT ALTEL

111.5902 145,00° TIC CARTE ALIMENTATION 12 Voc

111.5771 400,00

ALTEL en kit complet teans boiling PROMO 112,5770 1.53,5 FHT 1,250,00°TTC

ď

Matériel non homologué. Usage interdit sur réseautéléphonique public

248.74 FT

111.7852

POLR LA MAISON POUR LA NAISON

HASSU SYSTEME D'ALARME "Sans fil"

LECOICEPT DE LA CELEBRE HA-50 la centrle. • Très grande facilité d'un tion sanprovoquer de modification di décoraton intérieure • Possibilité d Liaison codée) sans fil entre les dés

LE SYSTME DE BASE HA-52 U COMPREN

Le HA-52U 111.8618 I.MIBFHT 1,950,00

100,00° TC

84,32 F HT

476,39 F-IT

111.348 111.348 DL-1S: Module de télécommande des portes 111,348, 185,50 FHT

PL-1: Module d'activatin des clignotants

R.-1: Module d'inhibition du démarreur

Le système CA 600I Détection de cons

OPTION HA-52 P

POUR LA MAISON

Détecteur I.R. passif à fai on radio-codés Détection: 10 m sur 110

REMPLACE UN INTERUPTEUR ENCASTRE NTERRUPTEUR AAGIQUE ES 47

Branchement 2 fis seulement

système HA-5: U (1,950,00 F) + 1 détecteur HA-52 P (450,00 F) +1 accu VARTA 12 V / 12 Ah (190,00 F) + 1 jeu ce piles pour l'ensemble (82,00 F)

OTAL: 2.672,00 F

I				
0	Télécommande soplémentaire HA52R	111.8629	227.66 F HT	270.00Fm
۵	Défecteur Infra-roide passif HA52P	111 8425	170 41 5 117	- JOO 037
ı		111 8K2R	244 67 5 117	000 000
-	74	111 8400	100 61 6 01	77.00
0		111 6591	15.18FHT	111 6591 1518FHT 18.00FTTT
z	Pile 9V VARTA por HA-52P	111.0739	23.61 FHT	28.00 F

50 ET HA LES PERFORMANCES DES AMELIOREZ

54-224 CLAVIER SANS FIL aplace et assure les fonctias de la télécommande Code secret interchargeable. 40057 F HT .e SA-224 111.8692

DETECTION INFRA-ROUGE

Le Pied à Coulisse 111.5937 METROLOGIE

SYSTEME DISSUASIF A SYTTHESE DE PAROLE ation de courant . Siène puissante : 115 dB Ce petit prodige détecte l'auverture des portes, capot, coffre et le bris de vitre... vous n'avez que deux fils à installir! (version de base) Télecommande par radio • Détecteus de choc incorpor 67,45 F HT

ALARMES POJR AUTOMOBILES ALARMES POUR AUTOMOBILES ALARMES POURAUTOMOBILES

a

SYSTEME 2 FILS A TILECOMMANDE

HAUT-PARLEUR DU 15/11/93

véhicule est équipé l'un système d'alarme et lui demande de s'éloigner. Son comportement est analysé et s'in ôblempère pas. SECURYIALK déclence le système d'alarme exstant, évitant ainsi les dommages au véhsule. SECURYIALK se compose d'un système de détection volumétrque à rayon d'action réglable et d'un microdans le compartiment moteur). C'est par ce hau-parleur que sont Ce dispositif à micro-contrôleur prévient le voleuréventuel que votre contrôleur associé à ui systèmé de synthèse de varole couplé à amplificateur de puissince, et à un haut-parleurspécial (à install diffusés les messages calarme

Compatible avec tout système d'ilarme, il est livrè prêt à l'enploi avec notice en français.

179,00° TIC 165,00° TIC

139,12 F HT

A partir de 5 pièces "interrupeur ES 47

150,93 F HT

112.8690

Distance de detectinn: de 0 à 10 m. Pouvoir de coupuri: 300 W/220 V

Système à détection infrarouge. Minuterie réglable de 4 s à 12 mn.

MODULE CAMERA MINIATURE NOIR et BLANC CCD 1/3" - Standard CCIR

VIDEO SURVEILLANCE

Haute sensibilité : 0,1 lux • M.

Objectif miniature: f:4,3 mm (F.

Obturateur et iris eletroniques (exposition automaniques (exposition automanique) • Excellente tualité

d'images • Haute ésolution: 380 lignes / 29800 pixels • Sortie: I Vcc/75 ohm • T' d'uti-lisation: -10 à +50 °C @ 95% RH ■ 380 lignes / 29800 pixels • 350 lignes / 29800 pixels • 350 sorie: Vec/75 ohn • T d'uii. I faction: -10 ± -50 ° C = 95% RH • 10 • Alimentation : 12 Vnominal • 4 (11 à 15 V DC / 200 m4).

1.003,37 FT 1.190,00 P 112.3880 SECURYTALK PROMO

létection par ultra-sons, la détection vstème d'alarme très performant létection INFRA-ROUSE, combinant "ouverture (contacts). Sortie prévue po relais IRT permettant d'inhiber vreur, de commanar les clignote nandes de ports.

31,62 F4T 160,20 FHT 111.5372 Le CAR-ALARM CA-8A 111.5370 L'émetteur suplémenaire Le relais 12V / 1 RT Emétteui - Récepteur codé pour TELE ALARME

IN PREPARATION

682.97 F.H. 8 750,42 F IT

Emetteur UHF video tour d°

parfir de 3 pièces

111,8050

e module caméra CD

LE (Pour CA-600 mander le schèma d'adap

IDEAL pour proteger les cabrioless ou laisser ouvert votre tou ouvrant l'éte Pas de déclerchements intempestifs dis au vont. Altmentation 12 V.

ANTENN: "STRIP LINE" adhésiveLong. 42 cm 42,31 FHT 489,00 TTC Le MW-100 111.4520

Spécialement étudiée pour la PA-1. Montée sur suport auto-collant 3M

L'antenne ST-1 111.4510 71,67 F HT 85,00 FTTC

/ENTE DE COMPOSANTS ET MATERIELS E.ECTRONIQUES B.P.113 - 59022 LILLE CEDEC - TEL: 20.52.98.52 - TEIECOPIE 20.52.12.04

Œ.

252,95 F HT 300,00 TTC

Ouverture naxi : 150 mm.

en mm ouen pouces.

Affichage .CD

ALARM CASA Pour ceux que le KIT rebute

834,74 FHT 990,00°TTC

581,71F HT 690,000 TTC Le PA-1 111.4470

PIED A COULISSE NUMERIQUE

AU 1/100éme de mm

DETECTEUR HYPER FRIQUENCES

POUR BUS 12C SOCAVEL CUTILS DE DEVILOPPEMENT

COMM'ne Micro-contrôleur 12C pogrammable en BASIC

Programmaion très simple en BASIC.

- grad nombre de périphériques pssibles Programmatin très simple en BASIC INTIL étendu · Compatible BUS P.C.

3.271,5 F HT Le COMM'ret 111.8105

RMS-10 Cart interface I²C pour PC gére sous WINDOWS Emuliteur La carte RMS-10 DOCUMENTATION SUR SIMPLE DEM n'importe quel PC, voire un simple MINITEL, suffit.

1.180,007TC

994,94" HT

112.5930

RMS-20

Totalement'ransparent, pas

 Double processeur. 12C Maître / Esclave /Espion

100 kbits / s

de perturbaion dans la

transaction 12C.

Compact, uilisable à partir

d'un portabe.

Ce nouvel appareil, sans oncurrence sur le marché, est

METEOROLOSIE

111.2614 Le RMS-20

4.900,007 TIC 4131,53 FH

KIT PROGRAMMATEUR DE PIC

-52, -55, -56, -57, -71, -84 et 71C42 (versions EPROM ou OTP) nicro-contrôleurs ROGRAMME de MICROCHIP **OUS-MÊME** PIC 16C RISC VOS

romètre de précision sur affi-eur LCD avec indication de la

dance, une imprimante gratique pour sortie de la courbe

valière de variation de pres

on, plus de nombreuses fonc

ralités intelligentes. 156,22 FHT 1.490

Le BAROGRAPHE (en kit omplet avec boillen) 111.8170 156,22 FHT Le BAROGRAPHE (montéet teaté)

ULTIMETER II

leur et regroupe : un par un puissant micro-

111.8060 79,42FHT 890,00°TTC Le kit complet avec sipports ZIF speciaux (sans allm. ii boilier).

MICRO-CONTRÔLEUR INTEL

La station UTIMETER II + le pluviomètre 01 " + l'interface PC / RS 232

Units métriques. Eclairagenocturne de l'affichage, etc... Vitesse et direcion du vent. Température, pant de rasée. Date et heure tvec alarme.

PLUS DE 20 FOICTIONS!

1 981 45 F HT

111.8490

station ULTIMETER II Le PLUVIOMETRE

111.7653 .306,91 FHT 1.550,00

111.7654 501,89 F HT 126,48 F HT 112.7656 489,WFHT

12.7655

L'INTERFACE PC / RS-232 logiciel en anglais)

Le câble d'extension uniersel 12 m

ros applications Grâce i notre package en BASIC...

INTE. 8052 AH BASIC comprinant le µ-contrôleur accomagné de son guide

de déviloppement (215 paies en Anglais).

L'ensemble SUPERPROMO 111.6210 248.4FHT 295,00° TTC

615 SELECTRO c'et le code d'appel du serveur Miltel Il vous offre :

un service d'assistaice et de renseignements echniques.

ELECTRONIQUE

/ENTE PAR CORRESPONDANCE DE CO

L'UNIVERS

0

a

des informations, des petites annonces classés, etc ... • les dernières nouveautés et promotions

echargez plus de 30 No de logiciels techniques poir compatibles PC. DSANTS ET MTERIELS ELECTRONIQUES B.P. 513 - 59022 LILLE CEDEX - TEL: 20.52.98.52 -TELECOPIE: 20.52.12.04

PARALLAX OUTILS DE DEVELOPPEMENT

z

α

Ø

ette société amériaine s'est spécialise dans les outils de léveloppement consicrés à la famille des nicro-contrôleurs RC de MICROCHIP à architecture "RISC"

BASIC Stamp (Décrit dan: ELEKTOR 191 du 05/94)

0

Fournie avec DLL, pernetiant de développer sous diffé ecevant des informatins ou en envoyant des ordres à n'importe quel périphéque se trouvant sur le BUS-PC rents langages (PASCA - BASIC - VISUAL BASIC et

Elle est utilisable sous 10S et compatible QUICK C") et avec un logiciel l'émulation et d'évaluation

BASIC et TURBO PASAL

Sur PC, applications gaphiques et multi-táches en

EPRtM 256 octets pour votre CONFIGURATION: Micri-contrôleur PIC avec programme en BASIC co

Le PROGRAMMING PACKAGE 111.1605 670,2 FHT 795,00 TTC

le manuel d'utilisaion et des notes d'appliations (en anglais).

Incluant le logicel d'édition sur PC, un ordon de liaison,

BASIC Stamp PROGRAMMING PACKAGE

mateur à quartz 4 MHz

Le BASIC Stimp 111.1370 269,8 FHT 320,00 TTC

MICROCONTROLEURS "PIC"

et DA'A-BOOK MICROCHIP

BASIC Stams + PROGRAMMING PACKAGE 111.1335

PRODUITY PARALLAX POUT LA PROGRAM-MATION LES MICRO-CONTRÒLEURS

Le PIC-16CXX PROGLAMMER 111.2630 1239,46 HT 1.470,000 TTC Programme, lit e vérifie les circuits de la fimille PIC-16Cxx P.C-16Cxx PROGRAMMER

PI:-16C5x DOWNLOADER

111.7725 1.365,94 IHT 1.620,00F TTC

Le PIC-STAR

EZ

L'outil de dévioppement économique pourla famille PIC-16CXX.

Le PIC-START 18

ы

Pour bien démarrer avec MICROCHIP!

Le PIC-16C5x DOWNIOADER 111.2702 206745 HT 2,452,007 TTC Un émulateur de 10M pour vos micro-contôleurs PIC-16C5x

PIC-16C71/84 TRUEFLIGHT

38,00° TTC 48,00° TTC 57,00° TTC 70,00° TTC

32,4 F HT 40,7 F HT 48.6 F HT

PIC-16C54 IC/P PIC-16C56 XI/P PIC-16C57 XT/P PIC-16C71 (4/P

Decrit dans ELEKTOR 189 du 03/94

Aicro-contrôleurs Verson OTP

Le PIC-16C71/84 TRUIFLIGHT 111.3038 2.067.45 FT 2.452,007 TTC Un programmatur + télé-chargeur pour PIC-16C71/84

PIC-16Cxx Software & Manua

Le PIC-16Cxx Softwareet Manual 111.1058 338,91 HT 402,00 TTC Assembleur, simulateur et manuel ('utilisation.

REFLECTION 5x

182,007 TTC

244,00° TTC 256,00° TTC

215,8,FHT

111.7758

OK

154,00° TTC

129,8 F HT 153,4 F HT 205,7. F HT

111.7726 111.7753 111.7756

PIC-16C54/W PIC-16C56/.W PIC-16C57/.W PIC-16C71/.W

S

rôleurs Version UV-PROM

59,2 F HT

SIG

111.7755 111.7757

111.7751

1.859,19 FHT 2.205,00° TTC Simulateus d'E/S pour la famille IIC-16C5x Le REFLECTION 5x 111.2862

Véritable émulateur pur PIC-16C5x sur circuit e qui tourne à 20 MHz 4831,37 F HT 5.730,00° TTC 111.3399 Le ClearView 5x

125,6.FHT 149,00°TTC

111.7730

Le DATA-BOJK

DATA-BOOK MICRO:HIP

CATALOGUE DETAILLE DE OUTILS DE DEVELOPPIMENT PARALLAX sur imple demande

REGLEMENT A LA COMMANDE : Forfait port et CONDITIONS GENERALE: DE VENTE

IVRAISONSOUS 24 HEURES

Supplement 80,00F CHEONO POST

FRANCO à partir de 70000

Pour faciliter le traitenent de votre commande veuillez mentionne CONTRE REMBOURSEMENT: Frais en sus selon li taxe en vigueur. la REFERENCE COMLILETE des articles commundés.

Mises au point

Dans notre annonce de l'alliance ALSE-MB Electronique (infos p. 92 N° 563), notamment pour la distribution conjointe des logiciels Synario de Data I/O, nous avons donné de mauvaises coordonnées pour l'antenne parisienne de ALSE.

Les honnes sont :

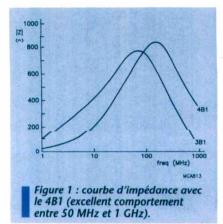
ALSE 121, rue Nationale 75013 Paris

Tél.: (1) 45.82.64.01 Fax: (1) 45.82.67.33

Toutes nos excuses à ALSE et à nos lec-

Bon nombre de lecteurs, bien qu'intéressés par la publication d'applications HF, rencontrent des difficultés tant de réalisation que d'approvisionnement.

 Celles liées à la réalisation sont de trois ordres:


- reproduction des cartes imprimees, - manque de moyens métrologiques, - emploi de composants passifs non

• Concernant l'approvisionnement en général, il faut bien reconnaître que la HF est un domaine bien spécifique et qu'il n'existe que peu de surfaces spé-cialisées dans ce domaine disposant d'un stock diversifié

S'il est difficile d'utiliser d'autres composants que ceux préconisés pour les actifs, ne serait-ce que pour des problèmes de brochage, il en va différem-

ment des passifs.

Rappelons qu'un condensateur n'est pas un composant parfait, pas plus qu'une self et que les matériaux constitutifs de ces éléments déterminent le domaine fréquentiel dans lequel ils peuvent travailler correctement. En HF pour les capacités de liaison, d'accord, voire de découplage (en complement), il faut utiliser des condensateurs céramique (les plus courants) faute de quoi les résultats risquent d'être décevants (par exemple avec des films plastiques si, si, il y en a qui...).

De même pour les selfs d'arrêt (choke), le matériau ferrite doit se comporter correctement aux fréquences mises en œuvre et surtout ne pas saturer selon les courants continus véhiculés.

Une self d'arrêt est nécessaire sur les étages actifs pour transmettre l'énergie continue en évitant les remontées de HF sur l'alimentation. Si son impédance est trop faible en HF, non seulement le gain de l'étage diminuera, mais cela créera aussi une désadaptation (sur des impédances caractéris-uques de 30 ou 73 s2) et de plus la HF ne sera plus stoppée vers l'alimentation, d'où couplage inter-étages par les alimentations; on voit donc que toutes choses égales par ailleurs, cela peut conduire à des résultats catastrophiques, même si on satisfait aux ràgles de routage évoquées dans notre précédent numéro.

Les barreaux ferrite en matériau 4B1 Philips qui permettent de réaliser les selfs d'arrêt MPK que nous utilisons et continuerons d'utiliser pour de simples questions de performances sont stockés chez Chip Service. Ce même re-vendeur proposera les circuits imprimés des réalisations HF de la revue pour autant qu'il reçoive un minimum de 25 commandes. Notamment, il propose l'ensemble des circuits du récepteur large bande 900 MHz des

numéros de juillet-août à un coût moyen de 120 F TTC par carte (double faco trous mótallisós, étamé) et bien évidemment les composants qui vont avec (NEC μ PC 1678G = 1677, self d'arrêt, résonateurs diélectriques, BB833, etc.) Concernant l'aspect métrologie, nous avons commencé et continuerons sur les six mois à venir à vous proposer de petits ensembles de mesure HF permettant, sans rivaliser avec du matériel professionnel à haut coût, de mettre au point ou dépanner tout montage HF à des fréquences inférieures au GHz. Pour finir, car nous reviendrons en dé-

tails sur les ferrites HF et notamment sur les barreaux (rods) en 4B1, signa-lons que la self d'arrêt telle que nous l'employons comporte entre 25 et 30 spires jointives de fil émaillé cuivre en ø 0,3 mm, sur un barreau ø 1,65 mm et I = 15 mm ($L = \mu_0 \mu_r$ ($N^2 A/I$) Henry). Ceci conduit à une inductance de 12

μH environ avec une impédance supérieure à 2 ka entre 10 MMZ et 1 GMZ sans saturation jusqu'à au moins 0,5 A.

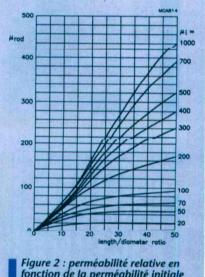


Figure 2 : perméabilité relative en fonction de la perméabilité initiale (250 pour le 4B1) et en fonction du rapport l/d du bâtonnet.

Instrumentation

virtuelle sur PC chez

Multipower

Multipower propose «Handyscope» et «Handyprobe».

Grâce à ces deux instrumentations de très faible encombrement, vous pouvez aujourd'hui transformer votre PC portable en voltmètre, oscilloscope, analyseur de spectre et enregistreur de données.

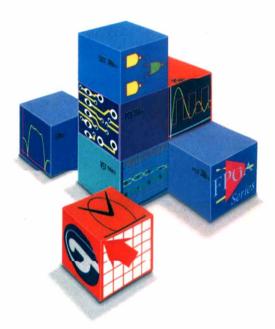
Connectés directement sur le port d'imprimante et sans alimentation extérieure, il n'est pas nécessaire de savoir programmer pour les utiliser.

Handyscope et Handyprobe sont livrés avec leurs logiciels conviviaux d'appli-cation graphique. Les données peuvent ainsi être traitées, imprimées, stockées sur disquette, ou exportées en ASCII ou vers des tableurs comme EXCEL.

Handyscope est un convertisseur à 2 canaux de 12 bits, avec fonction Sampe & Hold, et une sensibilité de 0,5 V à 20 V, bipolaire.

Le Handyprobe est un convertisseur monocanal à 8 bits, avec fonction Sample & Hold et une sensibilité de 0,5 V à 400 V bipolaire.

Pour plus de renseignements, contac-


Multipower 22, rue Emile-Baudot 91120 Palaiseau Tel.: (1) 69.30.13.79

Fax: (1) 69.20.60.41

Simplicité de construction

L'intégrale
OrCAD/PSpice/CCT:
de la conception
à la fabrication

remier fournisseur français de CAO électronique (plus de 10 000 logiciels CAO Electronique installés en France), ALS Design vous propose la solution 32 hits la plus complète et la plus intégrée du marché: saisie de schémas, simulations logique et analogique, synthèse logique des PAL/FPGA, simulation de lignes, CEM, placement et super-routage 100% de circuits imprimés dans une architecture unique!

38, rue Fessart - 92100 Boulogne Tél. : (1) 46.04.30.47 Fax : (1) 48.25.93.60

lectroniau

VOICI VOTRE 1º CADEAU D'ABONNEMENT...

Cette boite de rangement au superbe design pour dix disquettes au format 3,5 pouces.

OU VOICI VOTRE 2° CADEAU D'ABONNEMENT

ment (en version DOS et Windows) pour dialo-guer avec le serveur d'Electronique Radio Plans : le 3615 ERP.

EMUL 2: Un superbe émulateur minitel sur PC pour optimiser l'exploitation du minitel.

electronic

12 NUMÉROS D'ELECTRONIQUE RADIO PLANS

MON CADEAU

au prix exceptionnel de 259 F* SEULEMENT (*étranger 364 F)

ie choisis mon cadeau :

- LA BOITE DE RANGEMENT DISQUETTES
- LES DISQUETTES LOGICIELS ERP

je joins mon règlement par :

- CHÈQUE BANCAIRE OU POSTAL
- CARTE BLEUE N° LLLL LLLL LLLL

DATE D'EXPIRATION L I I I

SIGNATURE

je recevrai magazines el cadeau à l'adresse suivante :

ADRESSE :

PROFESSIONNELLE PERSONNELLE

☐ JE SOUHAITE RECEVOIR UNE FACTURE

Ce coupon est à renvoyer accompagné de votre règlement à : ELECTRONIQUE RADIO PLANS - Service abonnements. 2 à 12, rue de Bellevue 75019 PARIS

0 / 564

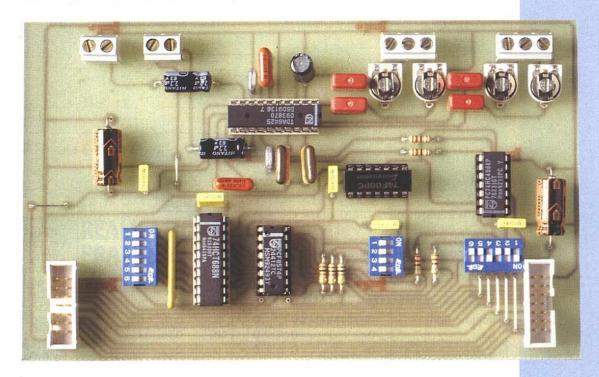
DOMESTICUS: MODULE SONORISATION

Voici le dernier

module élémentaire

de cette application

de Domotique : le


module sonorisation.

Ce bornier, relié sur

le réseau Domotique

vous permettra

de commander la

sonorisation de votre appartement, par préamplificateur adressable au travers du

réseau I2C. Comme pour tous les modules de DOMESTICUS, le traitement de ce

bornier sera pris en compte dès la prochaine révision de l'Atelier Logiciel disponible

prochainement sur le serveur.

Le composant principal de cette réalisation est le préamplificateur commandé par le réseau I2C, le TDA 8425, qui possède les caractéristiques suivantes :

- Possibilité de sélecter 2 canaux stéréo différents
- 4 modes de fonctionnement des canaux : stéréo, pseudo stéréo, spatial stéréo, mono
- Réglage du volume et de la balance
 Réglage des graves et aigus avec une
- fonction de silence

Description du circuit TDA 8425

Le synoptique du circuit est donné figure 1. On retrouve les différents éléments du préamplificateur : le sélecteur de canaux, le commutateur des modes de fonctionnement, le réglage du volume, balance, grave et aigu, ainsi que le circuit de décodage des trames I2C.

Sélecteur de canaux

Le sélecteur de canaux permet de commuter deux sources de signaux stéréo (ou 4 sources mono).

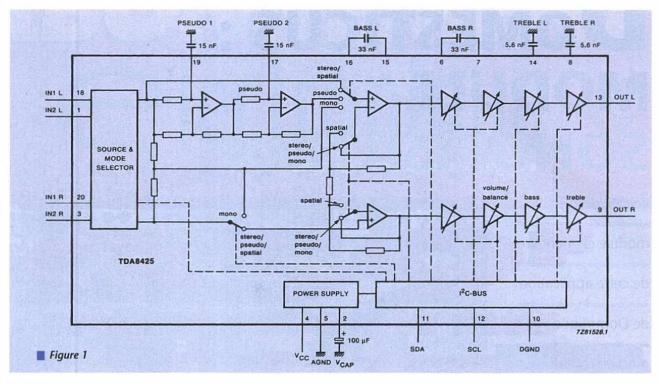
Réglage du volume et de la balance Le contrôle de la balance entre les canaux s'effectue simplement par un contrôle du volume de façon indépendante sur chaque voie (gauche ou droite). Le gain de chaque voie peut être ajusté de +6dB à -64dB par pas de 2dB. Un pas complémentaire assure une atténuation supérieure à -80 dB. Réglage des basses et des aigus

Les basses sont réglés de +15dB à -12 dB par pas de 3dB, et les aigus de +12dB à -12dB par pas de 3dB.

Tous ces réglages sont effectués à distance par les octets contenus dans les trames qui circulent sur le réseau I2C. Approche logicielle

Comme tous les circuits de la famille 12C, le TDA 8425 répond à une syntaxe logicielle précise pour fonctionner correctement. La trame décodée par le

circuit comprend des blocs de 3 octets de base :


- L'adresse du circuit (MAD)
- La commande de la tramé (SAD)
- La valeur de cette commande

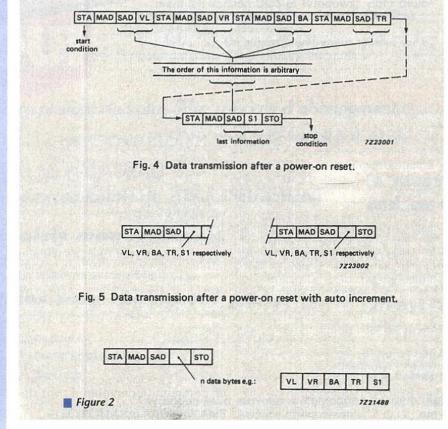
L'adresse du circuit est figée pour tous les circuits intégrés TDA 8425. On ne peut alors connecter qu'un seul circuit sur un réseau I2C, à l'adresse 82 en hexadécimal.

L'octet de commande de trame peut prendre les valeurs définies dans le **tableau 1**: 0 pour le réglage du volume de la voie gauche, 1 pour le réglage du volume de la voie droite, 2 pour le réglage des basses, 3 pour le réglage des aigus, et 8 pour les fonctions de commutation.

En fonction de la commande contenue dans le second octet, le troisième octet prend une valeur comme décrit dans le tableau 2. Les valeurs correspondant à la commande de volume sont détaillées dans le tableau 3, celles correspondant au réglage des graves dans le

	128	64	32	16	8	4	2	1
	MSB					7 = =		LSB
function	7	6	5	4	3	2	1	0
volume left	0	0	0	0	0	0	0	0
volume right	0	0	0	0	0	0	0	1
bass	0	0	0	0	0	0	1	0
treble	0	0	0	0	0	0	1	1
switch functions	0	0	0	0	1	0	0	0

■ Tableau 1 subaddress SAD


tableau 4, et celles correspondant au réglage des aigus dans le tableau 5. Les tableaux 6, 7 et 8 permettent de composer l'octet pour la commande de commutation.

Le réglage complet du circuit préamplificateur est ainsi réalisé avec la transmission d'une trame contenant 5 groupes des 3 octets de base définis précédemment. Cette transmission complète est recommandée la première fois après une mise sous tension. Dans ce cas il est important d'envoyer en dernier la commande de fonctions de commutation, comme le montre le schéma figure 2. Après cette initialisation du circuit, chaque commande peut être envoyée séparément.

Synoptique du bornier son de Domesticus

Le schéma du bornier son de Domesticus est donné figure 3. Il comporte outre le circuit TDA 8524, un circuit de décodage d'adresse particulier. En effet, comme le TDA 8524 ne possède qu'une seule adresse sur le réseau I2C, nous avons effectué un décodage d'adresse initial avec un PCF 8574. L'affectation du bornier à un des 3 réseaux disponibles sur le connecteur de Domesticus s'effectue par le switch S2, l'adresse du circuit IC1 (PCF 8574) par le switch S1. Le circuit IC1 reçoit l'adresse du circuit IC3 (TDA 8524) présent sur le bornier. Cette adresse est comparée par IC2 avec celle configurée par le switch S3. En cas de d'accord sur les adresses, le signal valide deux interrupteurs analogiques, et permet au circuit IC3 de recevoir les signaux du bus I2C.

Par cette méthode, nous pouvons adresser 64 modules sonorisation sur un réseau I2C, donc 192 modules dans une installation Domesticus (plus que nécessaire). Dans le cas d'une utilisation avec plusieurs modules sonorisa-

		MSB							LSB
function		7	6	5	4	3	2	1	0
volume left	VL	1	1	V05	V04	V03	V02	V01	V00
volume right	VR	1	1	V15	V14	V13	V12	V11	V10
bass	BA	1	1	1	1	BA3	BA2	BA1	BAO
treble	TR	1	1	1	1	TR3	TR2	TR1	TRO
switch functions	S1	1	1	MU	EFL	STL	ML1	MLO	IS

Tableau 2

2 dB/step (dB)	V x 5	V×4	V x 3	V×2	V x 1	V x 0
6	1	1	1	1	1	1
4	1	1	1	1	1	0
- 62	0	1	1	1	0	1
- 64	0	1	1	1	0	0
≤-80	0	1	1	0	1	1
≤-80	0	0	0	0	Ö	0

Tableau 3

tion, nous vous conseillons d'opter pour la même adresse du circuit IC1. Les entrées son des 2 canaux s'effectuent au travers de résistances ajustables AJ1 à AJ4.

Vous pourrez ainsi régler la balance entre les deux canaux, et éviter d'avoir à ajuster les volumes lors d'une commutation de canal. Les sorties s'effectuent sur des bornes à vis, qui permettent une connection aisée vers un amplificateur de puissance.

RÉALISATION PRATIQUE

Comme tous les borniers du système Domesticus, ce module s'intègre dans le même type de support de carte à fixer sur rail DIN ou à fixer au mur par des vis. De chaque coté de la carte, nous retrouvons la connectique utilisée pour se raccorder au bus de Domesticus (2 connecteurs HE10 14 points), et

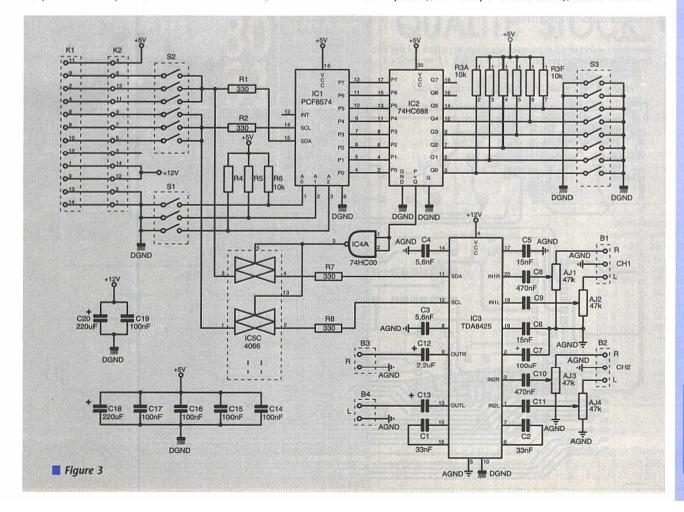

3 dB/step (dB)	BA3	BA2	BA2	BAO
15	1	1	1	1
•				
 15 12	i 1	0 0	i 1 1	1 0
•				
ö	0	ï	ï	0
- 12	0	ö	ï	0
•				
 - 12	ö	ő	ö	ö

Tableau 4

les bornes de raccordement du son en bas du module. L'implantation n'appelle pas de commentaire particulier, si ce n'est à ne pas oublier de câbler les straps (nous avons préféré utiliser 7 straps pour éviter d'avoir un circuit en double face, et ainsi faciliter le travail de reproduction pour de nombreux lecteurs).

Programmation du bornier

La programmation consiste à envoyer à l'adresse du circuit IC1 (adresse définie par le switch S1), l'octet contenant

3 dB/step (dB)	TR3	TR2	TR2	TRO
12	1	1	1	1
12	1	0	1	0
0	0	1	1	0
- 12	0	0	1	0
 - 12	0	0	0	0

Tableau 5

function	ML1	ML0	IS	channel
stereo	1	1	0	1
stereo	1	1	1	2
sound A	0	1	0	1
sound B	1	0	0	1100
sound A	0	1	1	2
sound B	1	0	1	2

Tableau 6

choice	STL	EFL
spatial stereo	1	1
linear stereo	1	0
pseudo stereo	0	1
forced mono*	0	0

Tableau 7 : * la fonction peusdo-stéréo n'est pas possible dans ce mode

mute	MU
active ; automatic	
after POR	
not active	0

Tableau 8 : POR : Power On Reset.

l'adresse du circuit IC3 (définie par le switch S3). Attention pour des raisons de routage de la carte sur un circuit simple face, l'affectation des bits du switch S3 ne correspond pas aux bits de l'octet envoyé. Il est nécessaire d'utiliser la table de correspondance décrite dans le tableau 9. Bien entendu toutes ces tables de correpondances sont intégrées dans l'Atelier Logiciel de Domesticus, ce qui rend transparent l'adressage des borniers.

Atelier Logiciel de Domesticus

Une nouvelle version de l'Atelier Logiciel de Domesticus est maintenant dis-

NOMENCLATURE

Résistances :

R1, R2: 330 Ω

R3: 10 kΩ réseau SIL7 + 1 commun

R4 à R6 : 10 kΩ R7, R8 : 330 Ω

AJ1 à AJ4 : Ajustables horizontaux

47 kΩ

Condensateurs:

C1, C2: 33 nF C3, C4: 5,6 nF C5, C6: 15 nF

C7: 100 μF, 25V radial

C8 à C11 : 470 nF

C12, C13 : 2,2µF, 25V axial C14 à C17 : 100 nF

C18, C20: 220µF, 25V axial

C19:100nF

Circuits intégrés :

IC1: PCF8574 IC2: 74HCT688 IC3: TDA8425 IC4: 74HC00 IC5: 74HC4066

103.7111010

Divers:

S1: Dipswitch 4 inter horizontal

S2, S3: Dipswitch 6 inter horizontal

2 supports lyre 20 broches

1 support lyre 16 broches

2 supports lyre 14 broches

2 Borniers à vis au pas de 5,08mm

(3 bornes)

2 Bornier à vis au pas de 5,08mm

(2 bornes)

2 fiches HE10 points mâles bas profil

D7	D6	D5	D4	D3	D2	D1	D0
X	X	N3	N5	N6	N4	N2	N1

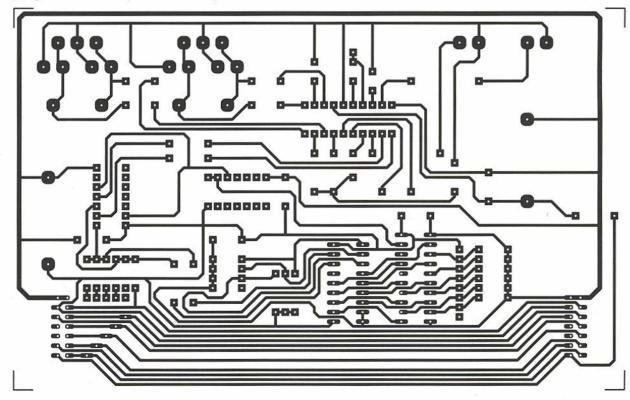

X = valeur du bit indéterminée

Tableau 9

Exemple : adresse 43 à programmer sur le switch 43 décimal = 101011b Donc l'octet à envoyer est XX001111b soit 15 en décimal

Figure 4 : le circuit imprimé reste en simple face.

octet à envoyer D0 à D7 - numéro switch 53 N1 à N6

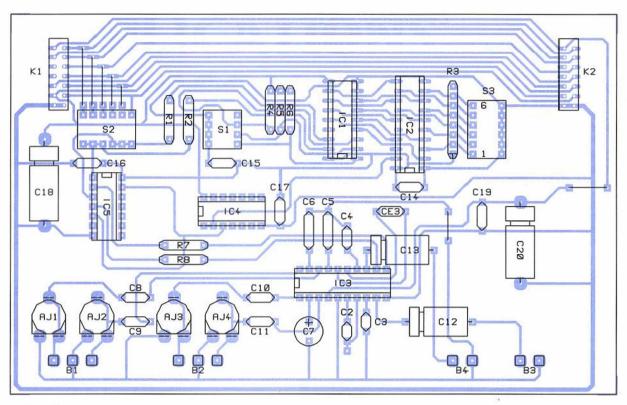


Figure 5

ponible. Cette nouvelle version corrige quelques bugs encore existants, et intègre tous les borniers décrits depuis le début de cette réalisation (bornier à 8 entrées Digitales, borniers 8 sorties Digitales, bornier Digital mixte, afficheurs géants, satellite général, module température), en permettant leur utilisation dans les grafcets et les équations. Cette révision est disponible sur le serveur et par correspondance à la rédaction (n'oubliez pas de joindre une enveloppe timbrée pour le retour avec votre disquette). Les prochaines

réalisations connectables sur le système Domesticus seront des modules plus complexes avec des fonctions évoluées intégrées, et des modules autonomes à microprocesseur. Bonnes réalisations et à bientôt.

J. GARBAY

QUALITE STOCK

Ventilateurs Courant Alternatif 220 - 115 VAC

120 x 120 x 38 mm 120 x 120 x 25 mm 92 x 92 x 38 mm 92 x 92 x 25 mm 80 x 80 x 38 mm 80 x 80 x 25 mm 150ø x 172 x 38.5 mm 150ø x 172 x 55

CATALOGUE SUR DEMANDE

Ventilateurs Courant Continu

5 - 12 - 24 - 48 VCC 120 x 120 x 38 mm 120 x 120 x 25 mm 92 x 92 x 25 mm 80 x 80 x 38 mm 80 x 80 x 25 mm 60 x 60 x 25 mm 60 x 60 x 23 mm 60 x 60 x 18 mm 40 x 40 x 20 mm 40 x 40 x 18 mm 40 x 40 x 13 mm 40 x 40 x 10 mm 25 x 25 x 10 mm

ELECTRONIQUE S.A.

B.P.48 - 94472 Boissy-St-Léger Cedex Tél. (1) 45.99.22.22 - Fax (1) 45.98.38.15

Marseille: Tél. 91.94.15.92 - Fax 91.42.70.99

FINDER MDS Nouvelle Version 5.0

Le Data-Book Electronique

Cette nouvelle version représente la plus importante mise a jour de FINDER MDS depuis sa création. Jugez plutôt...

- Plus de 32.000 composants avec leurs fiches techniques (dont certaines dépassent 900 lignes...)
- 283.000 Equivalences de Circuits Intégrés.
- 12 Méga Octets d'informations techniques, soit plus de 8.000 pages imprimées...
 Plus de 260 fichiers de dessins dont 80 schémas techniques.

FINDER MDS vous permet la recherche des composants par Nom, Caractéristiques ou Fonctions. Le programme vous offre aussi de nouvelles fonctionnalités comme :

- Recherche d'équivalences Transistors, Diodes, MosFet avec compatibilité des boîtiers.
- Personnalisation des critères de recherche pour les composants discrets.
- Recherche automatique d'un composant sur l'ensemble des bases de données.
- Impression directe des dessins et schémas.
 Editour graphique et Editour de texte intégrés.
 Possibilité de rajouter vos propres informations sur n'importe quel composant.

La base actuelle regroupe les familles suivantes

Semi Conducteurs Discrets

- Plus de 14.900 Transistors Bipolaires (jusqu'à 1100 Volts, 90 A et gain jusqu'à 30.000), avec les séries 2SA, 2SB, 2SC, 2SD.
 Plus de 2.400 MOSFET, Vertical MOSFET incluant les séries 2SK, 3SK, 2SJ et 3N..
 Plus de 4.700 diodes comprenant diodes de Bégulation, Varicap, Zener, Bedressement, Signal, etc...

Memoires

- Plus de 2.000 mémoires incluant RAM, ROM, EPROM, EEPROM

Circuits Intégrés

Plus de 7.800 circuits comprenant :TTL-LS, CD4000, HC-MOS, Amplis OP, Amplis AUDIOS, Régulateurs / Superviseurs / Comparateurs de tension, PALs, Drivers, Afficheurs, Transmission de données, TV-VIDEO, Micro-Processeurs 68000.

Sachez que pour obtenir l'information contenue dans FINDER MDS Version 5.0, vous devriez acheter pour plus de 2.500 FD3 de documentation technique alors profitez de notre offre Spéciale 5 m² anniversaire valable jusqu'au 31/12/94 et offrez-vous enfin le Data Book Electronique au prix de 950 Frs TTC (frais d'envoi inclus).

N'hésitez pas à nous contacter pour nos offres spéciales de mise à jour.

TDS-MARLIN Software - BP 32 - 83180 SIX FOURS CEDEX - Tél : 94 34 45 31 - Fax : 94 34 29 78

SOCEM-ELEC ==

UNE QUALITÉ, UN SERVICE DE PROFESSIONNEL

Des MATÉRIELS et des PRODUITS élaborés pour la réalisation des circuits imprimés

- machine à graver machine à insoler cisaille perceuse -
- plaques présensibilisées révélateur etc.

Les aérosols **ÉLECTROLUBE** pour l'électronique

Une **ÉQUIPE** et des **TECHNICIENS** à votre disposition.

Machine à insoler C2635

Cisaille G 200

Combi dével, rinçage, gravure

ZAC, 40, bd de Nesles - 77420 Champs-sur-Marne - Tél. : 64 68 23 37 - Fax : 64 68 29 75

APPLICATIONS DES RESONATEURS A ONDES DE SURFACE

Les quelques lignes qui vont suivre sont

consacrées aux résonateurs à ondes de

surface et à leurs applications. Dans des

numéros précédents nous avons déjà eu

l'occasion d'aborder ce sujet et nous nous

proposons ici de compléter votre

information. Si l'on en juge par les

questions qui nous ont été posées, et les problèmes plutôt fantaisistes qui nous ont

été soumis ce complément est indispensable. Les constructeurs de résonateurs à

ondes de surface, pour la promotion de leurs composants, livrent en général de

nombreuses notes d'application qui, en principe, sont là pour simplifier les problèmes.

Dans la plupart des cas les notes d'applications ne sont là que pour donner des idées et il reste une part de travail pour industrialiser un produit.

Il est bien clair que ces composants sont particulièrement dédiés à la conception d'émetteurs et de récepteurs pour transmission de données à faible puissance et faible débit.

Les notes d'applications décrivent l'emploi des résonateurs et leur participation à la conception d'oscillateurs. Ces descriptions sont bien sûr insuffisantes pour être directement exploitées en tant qu'émetteur ou récepteur.

Objectif à atteindre

Les systèmes de transmission ou télécommunication sans fils sont aujourd'hui très en vogue. Ceci appelle un premier commentaire.

Il y a à peine cinq ans il était de bon ton de critiquer les transmissions HF, et de comparer sans objectivité les deux supports de transmission : HF et IR infra rouge.

Les promoteurs de l'infra-rouge, constituant un véritable fan club, ne manquaient pas d'indiquer que l'IR n'était soumis à aucune législation, ce qui permettait de faire pratiquement ce que l'on voulait, c'est-à-dire quasiment n'importe quoi. Dans ce domaine nous avons hélas eu l'occasion de voir tout et n'importe quoi.

Contrairement à l'IR les transmissions HF étaient, et le sont toujours, soumises à des règlementations.

Ces bons prêcheurs, croyant répandre la bonne parole, ne manquaient pas d'arguments : faible consommation – on ne change jamais la pile de sa télécommande de téléviseur, c'est bien connu – faible directivité – même en visant le plafond «ça marche encore». Si l'on ajoute à cela un faible encombre-

ment et un coût des plus raisonnables, il n'y avait donc aucune raison pour que l'IR n'ait pas un bel avenir devant lui. Une des premières percées industrielles des mini-systèmes de transmission IR fût appliquée aux systèmes d'ouverture des portes de nos automobiles. Tout utilisateur de ce genre de «bidule» a pu en mesurer les limites. Les mauvais fonctionnements sont fréquents et dûs en grande partie aux conditions climatiques : soleil, buée, givre.

Heureusement les modes passent. Les systèmes IR, notamment en automobile, sont progressivement remplacés par des systèmes HF.

Pour ces marchés, les volumes sont

très importants et c'est un argument auquel les fabricants de composants ne savent pas résister.

En conséquence certains d'entre eux ont développé des composants spécifiques et ce sont ces composants qui vont nous intéresser.

Dans un tel système de transmission la destination finale : automobile, domotique, téléphonie, sécurité, n'a que peu d'importance. D'un point de vue électronique il s'agit simplement de transmettre une information. Le contenu du message à ce stade n'a que peu d'intérêt même s'il s'agit d'un ECG ou d'un code d'ouverture de porte.

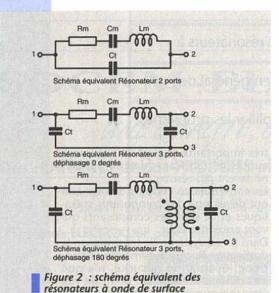
Après ce long préambule historique nous pouvons entrer dans le vif du sujet : la conception d'émetteurs récepteurs à l'aide de résonateurs à ondes de surface.

Les différents fabricants

Nous avons jusqu'à présent dénombré quatre fabriquants de résonateurs à ondes de surface bien distribués en France: Siemens, Sanyo (Axess Technology), Murata et RFM. Pour chacun de ces fabricants l'origine est la suivante: Allemagne, Japon, Japon et USA. Nous savons que la plupart d'entre vous éprouve souvent des difficultés

pour localiser les distributeurs. Nous allons donc vous aider au mieux.

Pour les composants Siemens on s'adressera de préférence à Sorelec. Sanyo est distribué par Axess Technology et RFM par Hypelec.


Pour Murata on s'adressera au réseau habituel de distribution de ce fabricant. Voilà en ce qui concerne le carnet d'adresses, revenons à l'électronique pour ne plus la quitter.

Comment concevoir un oscillateur

Pour concevoir un oscillateur, il faut commencer par choisir ce que l'on nomme le circuit oscillant. Le tableau de la figure 1 récapitule les différentes options qui se présentent au concepteur.

Les lecteurs ne seront pas étonnés car ils connaissent les six structures proposées. Le tableau de la figure 1 donne en outre les avantages et inconvénients pour chacune des configurations. Pour les oscillateurs à quartz il faut préciser que si la réalisation d'oscillateurs en mode fondamental ne pose pas de problèmes, ceux-ci surgissent dès que l'on passe en partiel 5 ou 7.

Sans anticiper sur la suite de notre laïus, on comprend très bien que pour atteindre des valeurs de 225 MHz il faut obligatoirement, pour un oscilla-

teur à quartz, opter pour le partiel 7, ce qui équivaut à un mode fondamental proche des 30 MHz fatidiques.

Rares sont les tailleurs de quartz qui acceptent de fabriquer un quartz 225 MHz en partiel 7. Il y a quelques années seul KVG avait accepté de réaliser pour nous un quartz 224,1 MHz en partiel 7.

Les oscillateurs L-C sont difficilement utilisables s'ils ne sont pas stabilisés. Leur emploi doit être réservé aux cas où la largeur de bande est très grande devant la dérive de l'oscillateur : TV en modulation d'amplitude ou en modulation de fréquence. Dans le cas de l'émetteur il n'y a donc aucune stabilisation et dans le récepteur, l'oscillateur local peut être asservi par une commande automatique de fréquence.

	Avantages	Inconvénients
Circuit résonant LC	Ajustable	Faible stabilité Vieillissement
Quartz	Haute stabilité	Fréquence fondamentale jusqu'à 25 MHz pour des fréquences plus hautes, coût plus élevé. Un seul canal
PLL	Plusieurs canaux	Consommation en courant Encombrement
Résonateur à ondes de surface	Stabilité Fréquence fondamentale 200 → 1000 MHz Faible coût Faibles dimensions	Tolérance +/- 75 kHz Un seul canal
Résonateur céramique coaxial	400 MHz → 2,5 GHz	nsnozinkus zemen
Résonateur diélectrique	1 GHz → 2,5 GHz	dace et à leurs applic

Figure 1 : avantages et inconvénients de différentes structures d'oscillateurs.

Cette option n'est pas envisageable pour des cannaux étroits : quelques kHz ou dizaines de kHz.

Si l'on souhaite utiliser un oscillateur L-C il devra donc être stabilisé. Le PLL est la seule solution. Si les critères d'encombrement et de prix sont des critères primordiaux le PLL est simplifié au maximum : diviseur fixe et quartz sur mesure. Cette solution est applicable avec, par exemple, un circuit intégré PLESSEY : SP5070.

Noter que la consommation augmente d'environ 40 mA et qu'il faut prévoir le circuit intégré, un quartz de référence et quelques composants externes. En contrepartie la fréquence de sortie est stable et précise. Finalement l'oscillateur peut être modulé soit en amplitude soit en fréquence.

Au tableau de la figure 1, il apparaît donc clairement que les résonateurs à ondes de surface constituent un bon compromis. Ce type de résonateurs a bien sûr des avantages mais aussi un inconvénient majeur : le manque de précision sur le calage. Ceci se traduit par une fréquence centrale connue à plus ou moins 75 kHz.

La précision relative à 225 MHz vaut environ 3x10⁴ et peut être comparée avec celle d'un quartz, bien souvent cent fois meilleure.

Nous verrons que, comme avec un quartz, il est très difficile de décaler un oscillateur à résonateur à ondes de surface. Ceci interdit pratiquement la modulation de fréquence.

Schéma équivalent du résonateur

Il n'y a pas un schéma équivalent mais TROIS schémas qui sont réprésentés à la figure 2.

Cette différence est due uniquement à la manière de réaliser les connexions internes. C'est donc un choix délibéré du fabricant.

Ce choix détermine l'application du composant.

Un des premiers problèmes rencontrés par les utilisateurs provient justement de ces trois schémas, du manque de compréhension quant au shéma équivalent à utiliser.

A la figure 2, le premier schéma équivalent est un schéma dit 2 ports, entendez par là qu'il n'y a que deux fils, comme un quartz.

Le schéma équivalent est d'ailleurs le même que pour un quartz.

Tous les schémas d'oscillateurs à quartz seront donc directement transposables pour les résonateurs à onde de surface 2 PORTS et seulement 2 PORTS. La seule différence entre ces deux types d'oscillateurs, nous l'avons déjà vue dans le tableau de la figure 1, provient de la possibilité de travailler en mode fondamental jusqu'à 1 GHz avec les résonateurs. Pour mémoire les quartz sont limités à 30 MHz.

Comme pour le quartz la fréquence d'oscillation est déterminée par les composants Lm et Cm et le facteur de surtension Q par Lm Cm et Rm.

Les deux autres schémas équivalents sont dits 3 PORTS.

Ce schéma se distingue du premier par le fait que nous n'avons plus deux fils mais trois.

Dans ces cas nous n'avons plus à faire à un dipole mais à des quadripoles. Ceci signifie que le résonateur est assimilable à un filtre, comportant une entrée, une sortie et un point commun qui peut être la masse mais ce n'est pas la solution unique.

Premier commentaire important, le résonateur à ondes de surface sera utilisé soit comme un filtre soit comme un quartz. Cette caractéristique est très importante car l'application en tant que filtre est bien souvent passée sous silence bien qu'elle soit presque aussi importante que l'oscillateur.

Pour compliquer les choses il existe deux types de résonateurs 3 PORTS : les résonateurs dit 0 degré et les résonateurs dits 180 degrés. Cette distinction est une fois de plus due aux fabricants et à la manière de connecter les transducteurs internes.

D'un point de vue électrique cette différence se traduit par une inversion ou pas de phase lorsque le composant est monté en quadripple entre un générateur et une charge.

Contrairement aux résonateurs 2 PORTS il n'y a pas de transposition avec les oscillateurs à quartz. Nous reverrons cela plus tard avec une collection de schémas d'applications issue des documentations des fabricants.

La plupart du temps les futurs utilisateurs sont troublés par la multitude de schémas provenant justement de ces différentes configurations internes. Le trouble peut aussi s'épaissir lorsque l'on est en présence d'un résonateur 3 PORTS déphasage 0 degré utilisé comme un résonateur 2 PORTS en connectant par exemple les broches 2 et 3 ensembles.

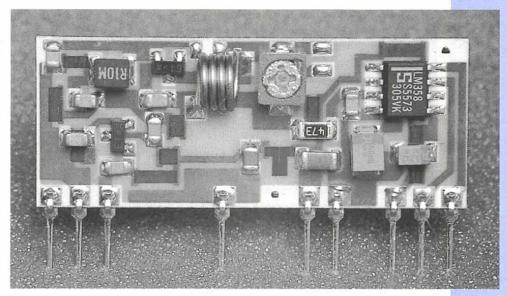
Dans le cas des résonateurs 3 PORTS il n'y a bien sûr aucune ambiguité quant à l'emploi en filtre passe bande. En géneral la perte d'insertion est voisine de 6 dB dans un système 50 ohms ce qui exclut pratiquement le positionnement en tête d'un récepteur.

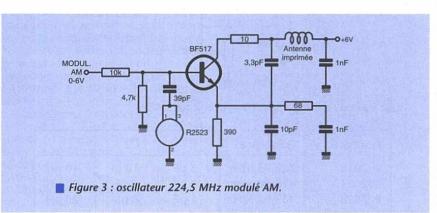
Si le résonateur 3 PORTS prend place dans un oscillateur, il est capital de savoir s'il s'agit d'un résonnateur 0 degré ou 180 degrés.

Un circuit oscillant avec un résonateur 3 PORTS 0 degré ne pourra pas osciller si le résonateur est remplacé par son homologue 180 degrés : la réaction ne pouvant évidemment pas être assurée. Lorsque vous achetez un quartz, vous êtes en droit de savoir s'il s'agit d'un mode fondamental ou d'un partiel, et si c'est un partiel de quel rang. Au n'eme titre pour un résonateur à ondes de surface il vous faut absolument savoir à quelle famille il se rattache : 2 PORTS ou 3 PORTS 0 degré ou 180 degrés.

Le nom du fabricant et la fréquence centrale sont des éléments importants mais insuffisants. Si la distinction entre les types 2 et 3 ports est assez facile à faire, il en est tout autrement pour le déphasage.

La solution, brutale mais radicale, passe par le câblage de deux oscillateurs prototype 0 et 180 degrés.

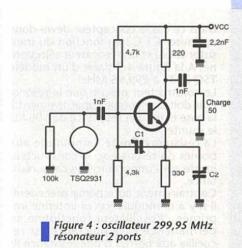

Les oscillateurs avec résonateurs 2 ports


Nous allons maintenant passer en revue plusieurs solutions proposées directement pas les constructeurs. Certains schémas pourraient, à tort à notre avis, être pris comme du prêt à pomper. Quoi qu'il en soit vous voilà prévenus. Il est évident qu'avant d'envisager une fabrication il faut avant tout réfléchir et effectuer des essais sérieux.

Le premier schéma d'application est donné à la figure 3 et sa provenance est Siemens.

Cet oscillateur met en service soit un résonateur 2 ports soit un résonateur 3 ports 0 degré avec 2 ports connectés ensembles. Comme nous vous l'avons précisé précédemment ce premier schéma est directement dérivé d'un oscillateur à quartz. L'auteur de ce schéma l'a dédié à un micro émetteur. Pour cette raison on reconnaît facilément l'entrée modulation qui reçoit des signaux logiques d'amplitude 0-6V.

Grâce à cette entrée modulation, l'os-

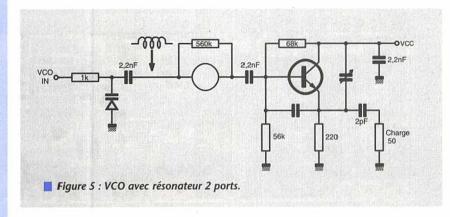

cillateur est alternativement mis en ou hors service. Il s'agit alors d'une modulation d'amplitude un peu particulière que l'on a l'habitude de nommer OOK, on-off keying, ou tout ou rien. La puissance de sortie est dissipée par une antenne imprimée. Il y aurait beaucoup à dire sur ce type d'antenne mais nous allons nous limiter au strict essentiel.

Une antenne imprimée est constituée d'une spire imprimée de faibles dimensions vis-à-vis de la longueur d'onde. Il est évident que cette antenne est , d'un point de vue miniaturisation, plus intéréssante qu'une antenne quart d'onde ou un dipôle. Pour arriver à cette réduction de la taille, le prix à payer est des performances médiocres. Même si la spire imprimée est adaptée au mieux, le gain de l'antenne pourra difficilement dépasser -12 dB.

On peut retenir qu'une antenne imprimée sera environ 100 fois moins bonne qu'une antenne dipôle accordée. Le facteur 100 se répercute comme un facteur 10 sur la portée... et c'est le paramètre qui vous intéresse le plus, n'est ce pas!

Comme d'habitude tout est affaire de compromis. Coût, miniaturisation et performances sont extrêmement liés et il est hélas impossible de gagner sur tous les tableaux.

Le schéma de la figure 3 exploite un transistor Siemens BF 517 mais d'autres types peuvent convenir. Le point de polarisation peut aussi être modifié pour augmenter ou diminuer la puissance de sortie.


Ce schéma est adapté à un résonateur R2523 et les condensateurs de 3,3pF et 10pF assurent la réaction.

Si l'on place un autre résonateur, fabricant différent ou fréquence différente, les valeurs des condensateurs seront modifiés.

Si la modulation n'est pas requise, l'entrée est maintenue en permanence à l'alimentation.

Le deuxième schéma d'application est signé Sanyo et est donné à la figure 4. Sur ce schéma le transistor n'est pas spécifié ainsi que les condensateurs assurant la réaction C1 et C2. Ce schéma est très intéressant car il met en évidence ce que nous avions signalé au préalable : il reste un travail de conception.

tenne imprimée et entrée modulation. Les élément fournis par le constructeur sont un peu plus précis car toutes les valeurs sont précisées pour trois fréquences entre 224 MHz et 433 MHz. Il est aussi possible de faire fonctionner l'oscillateur en permanence et de prélever le signal de sortie soit sur l'émetteur soit sur le collecteur. L'utilisation est envisageable soit en émetteur, soit en pilote d'émetteur soit en oscillateur local.

Nous terminerons le survol des oscillateurs équipés de résonateurs 2 ports avec trois schémas signés Murata: figures 7, 8 et 9.

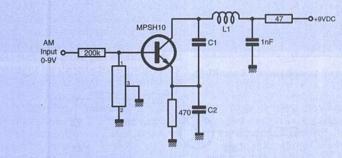


Figure 6 : oscillateur avec résonateur 2 ports, RFM.

Résonateur	Fréquence	C1	C2	L1
R02018	222,75 MHz	3 pF	18 pF	40 nH
R02021	418,00 MHz	1 pF	6 pF	25 nH
R02023	433,92 MHz	1 pF	6 pF	20 nH

Dans ce cas le concepteur devra donc optimiser C1 C2 en fonction du transister choisi et du résonateur sélection mé. A la figure 4 lils fagit d'un modèle TSO 2931 a 299995 WHz.

Les constructeur précisenquelle résonateun del l'être couplé capacitivement à harbaseret golune résistance del 100 KQ r le shunte.

la résistance limite Mamphilitude aux bonnes du résonateur, le constructeur insiste sun l'importance dencettemésis-

Contrainement au schéma précédent, illn's aminrodulation in lantenne imprimitéen: Moscillateur forretion ne ann permanence of appuissance est free queillie aux bornes d'une résistance Rs 50 ohms.

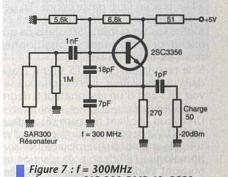
Cette configuration est apte à être utilisée soit pour un témetteur soit pour r l'oscillateur local d'un récepteur.

En cas de modulation, seule la modula: tion d'amplitude peut être envisagée, commire précédentment, eurocommutantialternativementil/oscillateur: en outhors service.

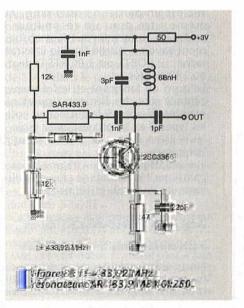
Pour une modulation de fréquence on devianavoir necours ànune aunte configunation : celle de la figure 5.

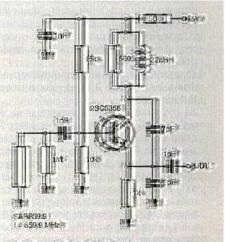
Avec ce schéma nous sommes toujours: en présence d'unirésomateur 2 gorts commedé entiterlaibase didutransistorrett la imasse Enimodifiantilégèrementilé complagementre le résonateur tettain masse, la réquence d'oscillaitonnesi. très l'égèrement modifilée. Nous sommles dont en présence d'une imodulation de friéquence.

Cette modulation correspond à un indice très faible : l'excursion en fréguence ne pouvant être supérieure à ciuelques kHz au maximum.


Cettellimitation est due au trèsifort coefficient de surtension du résonatear

Qui dit faible indice de modulation : mil difit tès faible avantage vis à vis de la modulationodiamphibude. Liameliorae tion se chiffle avec le carré de ma Pour cette raison, les oscillabauns àurésonateur à longés de suifacel modulés ent iréquemzenne son tralains la phatique, auetrès deu utilisés.


Dans les systèmes de communicationn outtransmission alifable puissance, jill est comantide travaille ravec des rapgorts S/Blaxtremement faidles. Avec ces languorts hous sommes en dessous: du seuil FM et la modulation d'ampliltude présente alors un double avantage : simplicité deuréalisation, faible. coûblet (meilleure qualité de transmis-


Il existe maldré (out une solution jour augmenter la déviation de fréquence : : intercaler une self supplémentaire en série avec le condensateun de 2,2 mft. Gette solution est économique dans la générationnd'une sous-porteuse par exemple. Mais nous insistons sur cegoint, la modulation FM infest qu'une inffine partie des applications des résomateurs

Continuons notre survol des schémas avec celui de la filipure coissuides docur ments fournis pan RFM. Colsehéma est très voisimae celui della figguer 31: lama

résonateur SAR 300 OMB 40x2520

laure 9 k f = 359,94 AHz ésonateur AR-359,9 MB 4 09250

Au schéma de la figure 7 la fréquence est figée par le résonateur à 300 MHz. Avec les éléments de polarisation, la puissance de sortie est faible : environ - 20 dBm. A l'évidence ce schéma est voué à être un pilote d'émetteur ou un oscillateur local. Il faut remarquer que les deux constructeurs japonnais préconisent la mise en place d'une résistance aux bornes du résonateur.

On augmentera la puissance de sortie en changeant soit le point de polarisation soit le transistor, soit les deux.

Le schéma de la figure 8 présente une originalité par rapport à ceux que nous venons de découvrir car le résonateur est placé entre la base et le collecteur. Ce circuit se contente d'une faible tension d'alimentation et la consommation est réduite. Par ailleurs, un soin particulier a été apporté à la réjection des harmoniques car le concepteur avait inclus la pureté spectrale dans son cahier des charges.

Cette pureté n'est obtenue qu'en plaçant un circuit accordé sur la fréquence de travail dans le collecteur. L'inconvénient majeur pour cette structure consiste en une opération de réglage impérative soit de la self de 68 nH soit du condensateur de 3 pF.

Hélas pour un système à très faible coût devant être produit en importantes quantités, un réglage fin peut se révéler complètement incompatible avec les impératifs de prix.

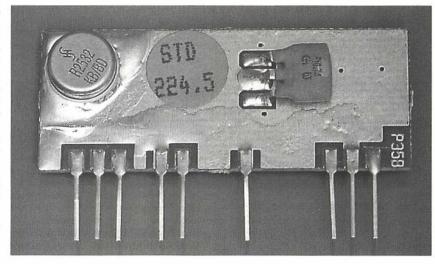
Le schéma de la figure 9 présente le même inconvénient : réglage de la self de 22nH ou de l'un des condensateurs 2 ou 7pF.

Cet exemple est donné avec un résonateur à 359,9 MHz mais la structure est adaptable à d'autres fréquences en modifiant la self et les deux condensateurs 2 et 7 pF.

Vous possédez maintennant un bel échantillonnage de schémas d'oscillateurs à ondes de surface 2 ports. Nous allons passer aux schémas mettant en oeuvre les résonateurs 3 ports.

Les oscillateurs avec résonateurs 3 ports

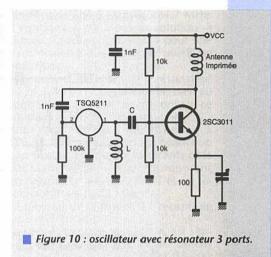
Le premier schéma est donné à la figure 10. Il est issu des documents Sanyo. Le résonateur est employé comme un quadripôle qui s'intercale entre le collecteur et la base.

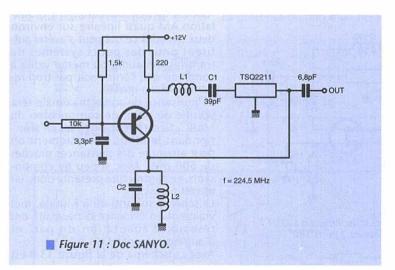

On remarquera la présence de deux éléments passifs L et C qui modifient le déphasage à la fréquence de travail et permettent la réaction et donc le démarrage des oscillations.

La présence d'un ou deux réseaux - adaptation et déphasage-de part et d'autre du résonateur 3 ports est caractéristique de celui-ci.

La mise au point d'un tel oscillateur est légèrement plus délicate que son homologue à version 2 ports.

Le risque le plus important est une oscillation L, C voisine, mais différente, de la fréquence de résonance.


Pour s'assurer que le circuit oscille bien sur la fréquence de résonance du résonateur à ondes de surface et non sur une fréquence voisine il suffit en général de diminuer légèrement la tension d'alimentation. Si la fréquence de sor-



tie évolue en même temps que la tension d'alimentation, les circuits d'adaptation et déphasage ne sont pas appropriés, ils devront donc être modifiés en conséquence jusqu'à ce que la fréquence de sortie soit indépendante de la tension d'alimentation.

Le deuxième schéma, toujours Sanyo, est donné à la figure 11. Il met en œuvre un résonateur TSQ 2211 dédié aux applications françaises à 224,5 MHz. Le circuit L2, C2 est accordé sur la fréquence d'utilisation. L1 et C1 assurent le déphasage correct pour le démarrage des oscillations.

Jusqu'à présent tous les oscillateurs que nous avons passés en revue sont bâtis autour d'un transistor courant. Ceci s'explique par une recherche, coûte que coûte, du plus bas prix.

Le schéma de la figure 12 est original car c'est un MMIC Avantek ou Mini-Circuits qui oscille.

Cette structure présente au moins trois avantages : simplicité de mise en œuvre, puissance de sortie importante et facilité de modulation de la puissance de sortie.

Si l'on ajoute que le nombre de composants est assez réduit, cette structure a donc tout pour séduire et permettre la réalisation rapide de prototypes.

En agissant sur la polarisation, courant de polarisation du MMIC, on peut aisément paramétrer la puissance de sortie. Avec un transistor de commande supplémentaire dans le circuit de pola-

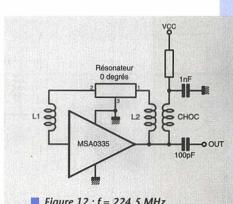
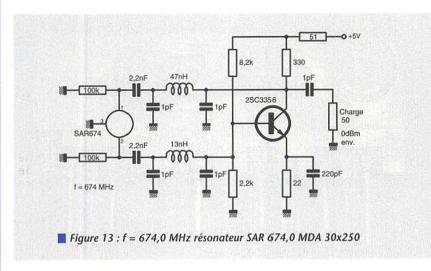




Figure 12 : f = 224,5 MHz résonateur 3 ports, Doc SIEMENS.

777 100pF 470pF 180 degrés 700 +3dBm 3SK102 5.1k 510

Figure 15 : structure d'oscillateur à MOSFET adaptés aux résonateurs 3 ports 180°

risation, on peut concevoir une modulation AM quasi linéaire sur environ deux décades ce qui peut s'avérer suffisant pour des petits systèmes de transmission audio ou même vidéo à condition que l'on ne soit pas trop re-

gardant sur la qualité.

La puissance de sortie maximale sera voisine du point de compression du MMIC. Ceci revient à dire qu'en sélectionnant le MMIC correctement on peut atteindre des puissances proches de 500 mW. Avec si peu de composants, cette structure présente donc un interêt certain.

Le schéma suivant, dû à Murata, met vraiment en évidence la nécessité des réseaux d'adaptation de part et d'autre du résonateur.

Avec ce schéma de la figure 13 il est

possible de disposer de 0 dBm 1mW, sur une charge de 50 ohms et ceci bien que la fréquence vaille 674 MHz. Bien que ce schéma puisse paraître complexe il n'en est rien et les condensateurs de 1pF pourront être constitués par des éléments de lignes ouvertes de faible impédance caractéristique.

Complétons notre panorama par le schéma Murata de la figure 14. Ici il n'est plus question de puissance mais plutôt de faible tension d'alimentation

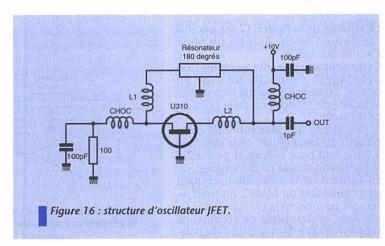
et faible comsommation.

La self de 23 nH résonne avec le condensateur de 2pF connecté entre collecteur et masse. Pour tirer le meilleur parti de cet oscillateur la self ou le condensateur doit subir un ajustement.

Le schéma de la figure 14 est parfaitement adapté à des applications domotiques : téléalarmes avec capteurs intelligents reliés par bus sans fils.

Nous en terminerons par deux structures proposées par CTI Siemens qui à notre avis ne doivent être prises que comme démonstrateurs et rien d'autre.

La première solution est donnée à la figure 15. Moyennant la présence d'un transistor FET double grille on fournit environ 2 mW à une charge de 50 ohms. Pour tirer le meilleur parti de cet étage il faut prévoir un réglage. Le concepteur précise, et nous avons pu le constater sur des maquettes prototypes, que les résultats en termes de bruit de phase ne sont pas fameux et que seul le coût est à mettre dans la colonne des actifs.


La deuxième solution est donnée à la figure 16. La structure est encore plus délicate que dans le cas précédent. Le transistor FET en gate commune aura un gain légèrement supérieur à 10 dB. Pour que le circuit puisse osciller, les pertes d'insertion du filtre devront donc être faibles. Les résonateurs ont une perte d'insertion, fonction du type et du fabricant, voisine de 6 à 8 dB. Il est donc fort possible que la reproductibilité, en tout cas à 433 MHz, ne soit pas suffisante pour envisager sérieusement une fabrication.

A des fréquences inférieures, les choses devraient s'arranger et il est préférable de se limiter à 200 MHz avec des JFET. Vous avez, désormais, une schémathèque qui doit vous permettre de résoudre les cas les plus variés et les plus compliqués. Avant de sélectionner l'oscillateur, il vous faudra jeter votre dévolu sur un résonateur particulier.

Pour passer à la conception de l'oscillateur garder en mémoire les caractéristiques de ce composant : fréquence centrale bien sûr mais aussi précision sur le calage de la dite fréquence et perte d'insertion pour les modèles trois ports

Les catalogues des quatre fournisseurs qui nous ont permis de rédiger cette compilation permettent de réaliser des systèmes de transmission sur les fréquences autorisées en France : 224,3MHz 224,5MHz et 224,7MHz mais bientôt aussi 433 MHz.

Attention car chaque fabricant ne dispose en général pas de toute la panoplie nécessaire. Chez Siemens par exemple on trouve 224,3 MHz et

	433,92 MHz	423,22 MHz
Murata	R 2632 3 ports	R 2531 3 ports
Sanyo	TSQ 4311 3 ports	TSQ 4212 3 ports
Murata	SAR 433,9 MB 40 x 250 2 ports SAR 433,9 MDA 30 x 250 3 ports	SAR 433,2 MB 40 x 250 2 ports SAR 433,2 MDA 30 x 250 3 ports
RFM	RO 2101	RO 2102

Figure 17 : disponibilité des résonateurs à ondes de surface pour une liaison à 433,92 MHz norme ETSI avec FI à 10,7 MHz.

224,5MHz, 224,5 et 224,7 pour RFM et Sanyo et les trois fréquences chez Murata.

Attention encore car ceci ne signifie ni compatibilité électrique ni compatibilité mécanique. La seule compatibilité qui peut exister concerne la fréquence centrale, très rarement le nombre de ports ou la tolérance sur le calage de la fréquence.

Tous ces fabricants proposent évidemment des résonateurs pour la fréquence européenne 433,92 MHz.

Le problème se corse pour la conception du récepteur.

Dans un premier temps tous les concepteurs, y compris les ingénieurs d'application, ont opté pour des récepteurs fonctionnant sur le principe de la super-réaction remise au goût du jour et plus ou moins stabilisés par des résonateurs à onde de surface.

Avec ce type de récepteurs l'inconvénient majeur réside dans une importante réémission de l'oscillateur local qui fonctionne hélas et par principe à la fréquence à receiveir.

la fréquence à recevoir. Ce procédé interdit le fonctionnement simultané de plusieurs récepteurs, même en veille, puisque chaque récepteur recoit les oscillateurs locaux de

tous ses confrères.
Aujourd'hui il semble impossible de faire homologuer un récepteur à super-réaction, et il faut s'en féliciter. Ce cas étant rejeté on se tourne classiquement vers des récepteurs à un changement de fréquence.

Récepteur à un changement de fréquence

Expliquer à un spécialiste de microcontrôleurs qu'un récepteur recevant une fréquence f doit générer localement une fréquence f+fi ou f-fi est une expérience intéressante. Cela tient presque de l'illumination ou de la révélation. Nous savons que pour les électroniciens familiarisés avec les transmissions, ces règles sont classiques et les rappels suivants ne s'adressent pas à eux.

La fréquence de l'oscillateur local est donc décalée d'une valeur que l'on appelle fréquence intermédiaire que l'on notera FI.

Certaines valeurs de FI sont quasiment standard, dans le cas qui nous intéresse des valeurs de 455 kHz ou 10,7 MHz sont parfaitement applicables.

FI = 10,7 MHz

Prenons le cas des fréquences autorisées en France - norme 1542. La fréquence la plus fréquemment employée est 224,5 MHz, pour l'oscillateur local nous avons donc deux solutions si l'on sélectionne FI = 10,7 MHz.

Première solution, l'oscillateur local est inférieur à la fréquence à recevoir,il vaut donc 213,8 MHz.

Pour répondre à ce problème les constructeurs proposent des résonateurs céramique à des fréquences décalées. Pour la fréquence 213,8 MHz Siemens dispose du modèle R2637 calé à + ou - 65 kHz.

Quant à Sanyo il s'agit du type TSQ 2111 avec le même calage.

Ces deux modèles sont sous certaines conditions compatibles tant mécaniquement qu'électriquement.

Cette compatibilité a été décrite dans un précédent article consacré à la description d'un système de transmission audio à 224,5MHz.

Chez Murata il n'existe pas de résona-

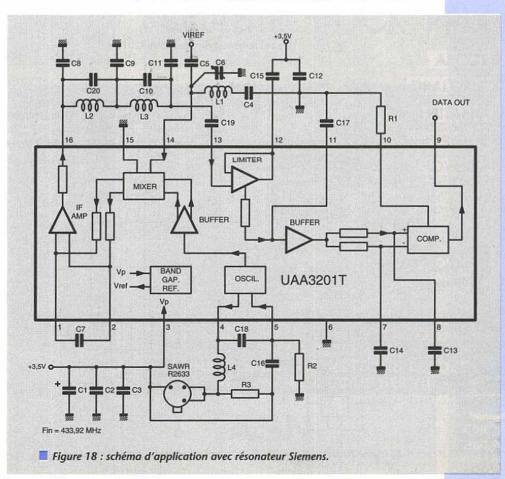
teur calé sur 213,8 MHz mais un résonateur calé sur 224,5 + 10,7 MHz soit 235,2 MHz. Ce composant est référencé SAR235.2MB40X200.

Que la fréquence de l'oscillateur local soit inférieure ou supérieure à la fréquence à recevoir ne change rien au système, les deux solutions sont identiques.

Chez RFM, bien que les résonateurs soient disponibles à 224,3 MHz 224,5 MHz et 224,7 MHz il n'existe qu'un seul résonateur décalé de 10,7 MHz et est destiné à la fréquence de 224,7 MHz.

Pour l'émetteur à 224,7 MHz on a recours au modèle RO2108 et pour le récepteur au type RO2080.

En choisissant bien le résonateur et le fabricant, on peut donc réaliser des systèmes de transmission sur les fréquences de 224,5 MHz et 224,7 MHz. A contrario il n'y a pas de solution -à l'heure actuelle en tous cas - pour une transmission à 224,3 MHz et une FI de 10.7 MHz.


Ceci ne veut pas dire que le résonateur à 224,3 MHz n'a pas d'interêt, bien au contraire, mais nous reviendrons sur ce cas dans le prochain paragraphe.

Pour la fréquence européenne à 433,92 MHz, la solution est beaucoup plus simple. Les quatre fabricants cités ont la même démarche et proposent un résonateur à 433,92 MHZ et un résonnateur à 423,22 MHz.

Le tableau de la figure 17 récapitule les 8 références.

La conception des récepteurs est simplifiée. Il suffit de sélectionner un circuit intégré ad-hoc : NE 605 par exemple ou MC3356.

La présence ou non d'un préamplifica-

teur d'entrée et d'un filtre réjecteur de fréquence image relève du choix du concepteur et du compromis performances / prix.

Pour le filtre d'entrée, RFM a une nette longueur d'avance sur ses concurrents et propose des filtres spécifiques avec de très faibles pertes d'insertion.

Ces filtres sont référencés RF1191 à 224,7MHz et RF 1172 à 433,92 MHz. Ils peuvent être utilisés avec une quelconque valeur de FI.

Pour les trois autres constructeurs les pertes d'insertion des résonateurs 3 ports montés en filtre valent environ 8 dB et il faut plutôt prévoir deux étages d'amplification.

Une alternative consiste à employer, comme nous l'avions fait dans notre système de transmission audio, un filtre helicoïdal.

Avec ce filtre, qui présente malgré tout une perte d'insertion de 3 à 4 dB, l'inconvénient majeur réside dans l'encombrement.

La largeur de bande est de quelques MHz pour un filtre hélicoïdal, il est donc tout à fait conseillé pour une FI à 10,7 MHz, la fréquence image se situant à 21,4 MHz, mais il n'est d'aucun secours pour des FI plus étroites : 500 kHz . C'est d'ailleurs le cas que nous allons traiter pour finir. FI = 500 kHz

Philips a conçu un circuit intégré spécialisé, récepteur pour transmission de données, modulation d'amplitude, pour des fréquences incidentes comprises entre 100 et 500 MHz. Ce circuit est référencé UAA 3201 T et nous avons déjà eu l'occasion de vous en parler.

Bien que tout soit fait pour faciliter la tâche des concepteurs, ceux-ci rencontrent bien des problèmes au moment du choix lorsqu'il faut associer fréquence de transmission, fréquence FI, présence ou non des filtres d'entrée

Le circuit Philips UAA 3201 T est initialement prévu pour la fréquence ETSI 433,92 MHz avec une FI de 500 kHz. Pour l'oscillateur local, les concepteurs ont le choix entre RFM et Siemens avec des résonateurs à 433,42 MHz pour RFM et 434,32 pour Siemens. Avec le composant RFM RO 2112 la FI vaut 500 kHz et avec le composant Siemens R2633, la FI vaut 400 kHz. Cette différence n'est pas très importante et ne change rien au principe.

Le premier schéma d'application de l'UAA 3201 T est donné à la figure 18, il utilisait des résonateurs Siemens.

Pour améliorer la sensibilité, on propose le schéma de préamplificateur de la figure 19.

Ce préamplificateur, bien que sélectifaccord par L1 et C2- ne rejette pas suffisamment la fréquence image.

Comme d'habitude nous sommes en présence d'une difficulté pour laquelle il n'y a pas de remède miracle mais simplement un compromis.

La question que tout concepteur doit se poser est la suivante : quelle est la fréquence image et est-elle vraiment gênante ?

Ši la FI vaut 500 kHz, oscillateur à 433,42 MHz, la fréquence image est à 434,42 MHz.

Si la FI vaut 400 kHz , oscillateur à 434,32 MHz la fréquence image est à 433,52 MHz.

Peut-on être vraiment perturbé par ces fréquences ? Est-ce admissible ?

Que devrait-on faire pour apporter un remède ? Quel en est le prix ?

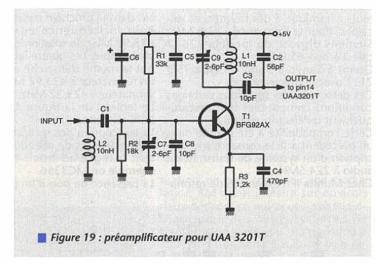
Les réponses orientent inévitablement le projet soit vers un produit simple et bon marché pour lequel on admet d'être éventuellement perturbé soit vers un produit très fiable ou aucune concession n'est faite sur le coût.

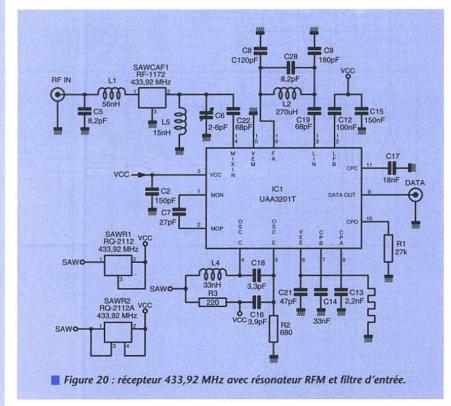
La décision, en général, ne relève pas du concepteur mais plutôt du type de marché auguel on s'attaque.

La plupart des PME, PMI intéressées par ce type de produits ne savent pas faire ce choix. Il ne s'agit pourtant que d'une étude comparative performance/prix.

Le schéma de la figure 20 représente ce que l'on pourrait appeler la version haut de gamme, l'oscillateur local met en service un résonateur 433,42 MHz 2 ports ou 3 ports RO 2112 ou RO 2112A et un filtre d'entrée RF 1172 centré sur 433,92 MHz.

Bien que le circuit Philips ait été conçu pour la fréquence ETSI: 433,92 MHz, il est tout à fait envisageable de détourner sa destination initiale pour l'utiliser sur les fréquences françaises autour de 225 MHz.


L'utilisation des fréquences françaises appelle quelques réflexions complémentaires. Il peut être particulièrement intéressant de s'évader de la fréquence ETSI qui sera prochainement bien encombrée par toutes les télécommandes : voitures, portes de garage, téléalarmes, télémesure, etc.


Evidemment, l'information est codée et suffisamment protégée pour qu'il n'y ait pas d'interférence entre deux systèmes.

Le message est suffisamment long et «protégé»pour qu'il soit impossible d'ouvrir la voiture ou la porte de son voisin.

Cela parait clair, évident, voire limpide, mais hélas, et nous avons eu l'occasion de nous en rendre compte, ce n'est pas évident pour tout le monde.

En utilisant un circuit de codage-décodage connu comme le MM53200 le

fréquence d'émission	fréquence d'oscillateur local	résonateur pour oscillateur local	filtre d'entrée
224,3	223,9 224,7	* RFM ou Murata	résonateur 3 ports Siemens ou RFM
224,5	224,1 224,9	*	résonateur Siemens ou Sanyo ou RFM ou Murata
224,7	224,3 225,1	Siemens ou RFM ou Murata	RF 1191 RFM

Figure 21 : UAA 3201T avec FI 400 kHz et fréquence entre 224,3 et 224,7 MHz.

risque est faible mais existe. La trame étant connue, ce circuit ne peut pas apporter une sécurité suffisante.

La solution intelligente passe par l'élaboration d'un codage propriétaire, évidemment non divulgué. Un microcontrôleur type 87751 peut parfaitement faire l'affaire tant en codage qu'en décodage.

Nous nous sommes un peu écartés de notre problème initial qui était le choix des fréquences porteuses et des fréquences d'oscillateur local.

Nous avons vu qu'il était possible de disposer de résonateurs à 224,3 MHz 224,5 et 224,7 MHz.

D'autre part le circuit UAA 3201 T admet une fréquence intermédiaire de 1 MHz maximum environ. Si l'on opte pour une FI de 400 kHz, les résultats sont assez simples et résumés dans le tableau de la figure 21.

Il faut noter que la solution existe pour les fréquences les moins utilisées 224,3MHz et 224,7 MHz. Ceci peut être particulièrement intéressant en terme d'évasion de fréquence.

La meilleure protection vis à vis de la fréquence image est obtenue en travaillant à 224,7 MHz.

Curieusement il n'y a pas de solution immédiate pour la fréquence à 224,5 MHz qui est la fréquence la plus utilisée en France.

Avec ces quelques pages nous avons essayé de vous présenter un éventail de solutions pour des systèmes de transmissions à faible puissance, faible débit, faibles encombrement, consommation et coût.

Nous ne nous sommes intéressés qu'au sous-ensemble HF qui est en général la préocupation majeure des concepteurs et aussi leur bête noire.

En réunissant les différents catalogues de différents constructeurs, nous avons démontré qu'il était assez facile de moduler un système :

tant sur la fréquence porteuse que sur les performances.

Ne vous imaginez pas que votre travail est fini, bien au contraire.

Même si vous optez pour une des structures que nous vous proposons, il vous reste encore quelques paramètres à figer : puissance d'émission, protocole d'échange, etc.

A partir de ce moment et seulement à ce moment vous pourrez commencer à établir un bilan de liaison et à utiliser un terme que nous n'aimons pas beaucoup : la portée.

Dans ce bilan de liaisons vous n'oublierez pas de tenir compte du gain des antennes -émission et réception-.

Avec des antennes imprimées, les résultats seront évidemment moins bons qu'avec des antennes fouet ou dipôles. Finalement avant d'annoncer, avec fierté, un résultat sur la portée, n'oubliez pas de préciser les conditions de mesure et chiffrer le TAUX D'ERREUR BIT.

Une portée seule ne veut rien dire. A une distance donnée, comment le message émis est-il altéré ? Il est bon à 99,99% ou bon à 10 %.

Si pour un matériel quelconque le fabricant donne une valeur de portée sans précision supplémentaire, vous serez en droit de vous poser quelques questions et en tous cas de lui poser la question.

À titre de comparaison le taux d'erreur bit du circuit UAA 3201 T vaut 3% lorsque le niveau du signal d'entrée est de -103 dBm.

Alors soyez précis et clair, personne ne pourra vous en faire le reproche.

François de DIEULEVEULT

ELECTRONIQUE S.A.

B.P.48 - 94472 Boissy-St-Léger Cedex - Tél. (1) 45.99.22.22 - Fax (1) 45.98.38.15

Marseille: Tél. 91.94.15.92 - Fax 91.42.70.99

C.E.N. vous propose ses

COMPOSANTS ELECTRONIQUES en POCHETTES

ERMES

NB	FAMILLE	CONTENU	PRIX TTO
25	Ampoules	E10, BA9S, LUCIOLE, ETC. DE 3 A 24 V	30,00
50	Circuits intégrés 4000	DIVERSES REFERENCES DANS LA SERIE COURANTE	50,00
50	Circuits intégrés 74LS	DIVERSES REFERENCES DANS LA SERIE COURANTE	50,00
25	Circuits intégrés linéaires	NE 555, LM 741, LM 324, LM 339, ETC.	50,00
10	Commutateurs DIP SWITCH	DE 2 A 10 CONTACTS	30,00
20	Condensateurs ajustables	VALEURS DIVERSES CERAMIQUES ET PLASTIQUES	30,00
100	Condensateurs céramiques Condensateurs chimiques	PAS DE 2,54 ET 5,08 - VALEURS DIVERSES DE 1 pF à 10 nF AXIAL RADIAL, 10 A 63 V DE 1 mF A 4700 mF	30,00 45,00
50	Condensateurs LCC pas de 5,08 mm	VALEURS DIVERSES DE 1 nF à 1mF	30,00
50	Condensateurs tantales gouttes	DE 6,3 V A 35 V - VALEURS DIVERSES DE 0,1 mF A 33 mF	30,00
5	Condensateurs variables	VALEURS DIVERSES	30,00
00	Condensateurs multicouches axiaux	VALEUR 100 nF	30,00
00	Condensateurs multicouches radiaux	VALEUR 100 nF	30,00
50	Condensateurs plastiques axiaux	DE 63 V A 400 V DE 1 nF A 1 mF	30,00
UU	Condensateurs plastiques radiaux	DE 63 V A 400 V DE 1 nF A 1 mF	30,00
00	Diodes LED diverses	RECTANGULAIRES, TRIANGULAIRES, RONDES, PLATES	40,00

NB	FAMILLE	CONTENU	PRIXTTC
50	Fusibles verre	TAILLE T20 T32 - VALEURS DIVERSES, LENTS, RAPIDES	30,00
20	Potentiomètres ajustables 10 tours	VALEURS DIVERSES	30,00
10	Potentiomètres ajustables 15-20 tours	VALEURS DIVERSES	30,00
50	Potentiomètres ajustables carbone	MINIATURES - VALEURS DIVERSES DE 10 OHM A 1 MOHM	30,00
50	Potentiomètres ajustables cermet	MINIATURES - VALEURS DIVERSES DE 10 OHM A 1 MOHM	40,00
10	Potentiomètres rectilignes	POT LIN, LOG, SIMPLE, DOUBLE, TAILLES DIVERSES	30,00
20	Potentiomètres rotatifs	POT LIN. LOG. SIMPLE. DOUBLE AXES DIAMETRES DIVERS	20.00
25	Quartz	FREQUENCES DIVERSES BOITIERS HC 6, HC 18	30,00
20	Régulateurs de tension	BOITIERS: TO 3, TO 5, TO 92, TO 220, DIVERSES TENSIONS	30,00
10	Relais	DIVERS DE 5 A 48 V	30,00
50	Réseaux de résistances	BOITIERS SIL ET DIL VALEURS ET BROCHAGES DIVERS	30,00
200	Résistances 1 % par 200	1/4 W 1/2 W - VALEURS DIVERSES DE 1 OHM A 100 KOHM	30,00
1000	Résistances 5 % par 1000	1/8 W 1/4 W 1/2 W - VALEURS DIVERSES DE 1 OHM A 1 MOHM	50,00
25	Selfs	AXIALES ET RADIALES - VALEURS DIVERSES DE 1 11H A 10 11H	30.00
100	Supports double lyre	DE 6 BROCHES A 40 BROCHES	30,00
100	Transistors BC	BOITIERS PLASTIQUES TO 92 : BC 237, BC 557, BC 558, ETC.	30,00
50	Transistors BF	BOITIERS PLASTIQUES TO 92 : BF 422, BF 255, ETC.	30,00

LES REVENDEURS DANS VOTRE DEPARTEMENT

DÉP.	NOM	ADRESSE	VILLE	TÉL.
12	EDS ELECTRONIQUE	30, rue Béteille	RODEZ	65 68 38 29
13	COM ELECTRONIQUE	85, rue Liandier	MARSEILLE	91 78 34 94
13	DIE BANK ELECTRONIQUE	25, boulevard Carnot	GARDANNE	42 58 38 65
13	SERVICE ELECTRONIQUE	5, rue Simian Jauffrey	MIRAMAS	90 50 01 52
14	ETABLISSEMENT FRANCOIS	4 bis, rue Duhamel	USIEUX	31 31 67 71
15	Bricolage Modélisme Electronique	8 bis, rue du Buis	AURILLAC	71 48 23 99
19	CORREZE ELECTRONIQUE	7, rue du Docteur Valette	TULE	55 26 50 44
20	TECHNI-SOUND	24, rue Dell Pelegrino	AJACCIO	95 23 33 46
21	DIJON COMPOSANTS	48, rue du Faubourg Raines	DIJON	80 42 05 04
24	ETS POMMAREL	14, place Doublet	BERGERAC	53 57 02 65
25	MICROPROCESSOR	29, bld JF Kennedy	BESANCON	81 80 72 13
26	CHEYNIS ELECTRONIQUE	4 les résidences du Parc	MONTELIMAR	75 01 39 03
27	VARLET ELECTRONIQUE	35, rue du Maréchal Joffre	EVREUX	32 31 23 36
30	COMPO ELECTRONIQUE	136, route d'Avignon	NIMES	66 26 00 08
31	SYSELCO	1, allée Charles de Fitte	TOULOUSE	61 42 80 20
34	ELECTRONIQUE DIFFUSION	155, boulevard L. Blanc	LUNEL	67 83 26 90
24	II ELECTRONIQUE	7, rue de l'Amiral Courbet	DELIENS	67 35 26 47
36	FLOTEC	44, rue Grande	CHATEAUROUX	54 27 69 18
37	RADIO SON	5, place des Halles	TOURS	47 38 23 23
38	ELECTRON BAYARD	11 bis, rue Cornellie Jemond	GRENOBLE	76 54 23 58
38	C.I.C. ELECTRONIQUE	34, bd du Maréchal Foch	GRENOBLE	76 46 96 64
42	RADIO SIM	18, place Jacquart	ST ETIENNE	77 32 74 62
45	TANDELEC:	AR, nuo Isan Jaurès	MONTARGIO	50 00 74 14
59	SJF COMPOSANT	5, rue Camtimpre	CAMBRAI	27 78 23 22
59	ELECTRONIQUE DIFFUSION	15, rue de Rome	ROUBAIX	20 70 23 42

DÉP.	NOM	ADRESSE	VILLE	TÉL.				
59	ELECTRONIQUE DIFFUSION	16, rue de la Croix d'Or	DOUAI	27 87 70 71				
59	ELECTRONIQUE DIFFUSION	19, rue du docteur Lemaire	DUNKERQUE	28 66 60 90				
59	ELECTRONIQUE DIFFUSION	234, rue des Postes	LILLE	20 30 97 96				
50	ELECTRONIQUE DIFFUCION	oa, av ue ot Amano	VALENCIENNES	27 30 97 71				
62	MAD ELECTRONIQUE	41, rue Henri Cadot	BRUAY LA BUISSIERE	21 62 00 59				
62	VF ELECTRONIC	166, bd Victor Hugo	CALAIS	21 96 11 31				
62	ELECTRONIQUE DIFFUSION	8, rue Sainte-Claire	ARRAS	21 71 18 81				
63	ATOLL	37, rue des Jacobins	CLERMONT FERRAND	73 91 86 92				
63	ELECTRON SHOP	20, av. de la République	CLERMONT FERRAND	73 91 12 89				
67	OD OENTER	1E, Grande Nue	MAGENEAU	88 93 20 08				
69	ESPACE AUTO	122 bis, Av. Jules Guesde	VENISSIEUX	78 00 26 46				
72	DIFFELEC	112 bis, rue Voltaire	LE MANS	43 24 36 70				
73	AUDIO ELECTRONIQUE	105, rue d'Italie	CHAMBERY	79 85 02 63				
76	RADIO COMPTOIR	61, rue Ganterie	ROUEN	35 71 41 73				
76	SONOKIT ELECTRONIQUE	74, rue Victor Hugo	LE HAVRE	35 43 33 60				
78	SONE! DIEELISION	Z.A. Leccule Duilleta						
		10, allee du Point du Jour	CONFLANS ST HONORINE	39 19 91 79				
80	COMPO DIF	14, rue Jean Calvin	AMIENS	22 91 11 49				
83	AZUR ELECTRONIQUE	280, bd Maréchal Joffre	TOULON	94 03 67 60				
89	SENS ELECTRONIQUE	Galerie march. Euromarché						
	4 A 11	Route de Maillot	SENS	86 65 68 07				
00	ELECTRONIQUE DIFFUSION	40, ruo Victor Hugo	WALAKUFF	(1) 46 57 68 33				
97	ELECTRONIC'SHOP	4, rue M. et A. Leblond	TAMPON	27 94 90				
BEL	AZ TRONIC (BELGIQUE)	14, rue A. Dem Reep	MOUSCRON	19 32 56841760				

CERTAINS DE NOS REVENDEURS AYANT DES CHARGES SUPPLEMENTAIRES (FRAIS DE DOUANE, FRAIS DE PORT, ETC.)
PEUVENT ÊTRE AMENES A APPLIQUER DES PRIX LEGEREMENT SUPERIEURS A CEUX ANNONCES DANS CETTE PUBLICITE.
RECHERCHONS REVENDEURS CONSULTEZ-NOUS.

CEN 472 RUE DU BLANC SEAU 59200 TOURCOING FAX 20 36 94 01 IMPORT EXPORT VENTE EXCLUSIVE AUX REVENDEURS ET INDUSTRIES

MAGNETIC - FRANCE 43 79 39 88

11, Place de la NATION, 75011 PARIS FAX: (1) 43 79 65 47 Ouvert de 9h30 à 12h30 - 14h à 19h Fermé le lundi

			Tea ==		****	1676	8052AHB. 300F 8665		201205 25-	2442 25-	222	762		*41033
Mos	74HC	74LS	055P	387W30F 389W25F	415666P	1905 24F	PCB80C31.45F ESS7 80C552100F ESS7	00 251F	7815 8F	38665 17F	237	SF 869 5F	815030 39F	L4201 15F
000	003F	003	F 105F	393M5F	RD	200313F	R10937P.210F BSS7 R6502P93F BSS1	04450F	7824 8F	382314F	240C	7F 936 5F		RF
47	02 CMS 4F	01	F 205F	555 CMS 6F		2005S27F	SAA1293.135F ESS1	504.240F	78L087P	3906 2F	242C10	OF 9617		
M5P	04 4F	035	F 749F	566CN 20F	5107191F 5108300F	2020 56F	80C535189F ESS5 80C451145F ESS5	99490F	78L107F	4123 6F	244B	6F 9819F		113C24115F
57	08 3F	05 4	F 869F	709CN8 7F	s	2040 23F	80C451PL145F ESS7 SDA2010.159F GALI	6V8 17F	78L155F	4416A 15P	245C 1	2F G65 20F	1	113C50918F 113C78114F
47	146P	07	F 1337F	741H 4F	5024290F	259316F	μP8751H. 450F GALZ μP87C51H348F SBB2	616.126F	78509 13F	5416 14P	262C	6F R96 16F	A13	113K1370 12F
	30		F 24424F		06	3040ZZF	EN447E.: 306F D	KAM	78540PC 20F	5631 99F	520 1	OF W9271	A20 3F	301KH0512F
71	85 77	13	F 37324F	1036 68F	A100442F	331025F 342031F	AMACK MSK	16463F	79089F	6051 427	6492	2F X89101	A703F	301KN0812F
	123P5F	15		1458N 5F	A1043 96F	3565 55P	CACCO 4425	6137F	79159F	6520 24P	663	6F X9321 8F Y90171	U06 24F	719VXAA18F
MS5P	1265F 1326F	21	F	1812W 150F	A1059 77P	357150F 381045F	741.6181 . 30F 5110	000 - 134F	791820F 79249F		679	SF BS	U5214F	A115F
41	138 CMS5F	26	F 11000 10F	1893W106F	A1101127F	428281F	AD7569JN150F SING AD7572AJ328F		79L058F		683	8F 170 61	7	A215F CAN189621F
71	1514P 15212P	28	74ALS	2904N 9F	A5231 131F	4292 80F	ADC080952F	RAM	79L128F	A1095 125P	711	2F 250 61	475 160F	D10NA 16F
51	1536P	32	F 03	2907H1443F	A5246 231F	4510 38F	ADC816C.276F 7481 ADC0820.227F CDM	5264 47F	ICL8069 28P	C2238 27F	911	8F	901227	D11M14F B526H7314F
31	15810F			2917M853F 2917W1455F	A5250191F A7579T220F	455580P	ADC1005.236F MK66	1000161F	AD58930F	C256563F	912	7F 126251	MSA	E526H77::14F
	16310F													
51	166 6F	47	F 0010F	3915N 43F	B321057P	5850 24F	COM8126.151F D434 81C17140F 4325	56C 70F	L200CV17P		V65C2	9F 508D 221	4	KAK58613F
r 41	2378r 2416r	51	P 029P	13700N24F	SDA	7010 75F	CDP185475F D516 D825136F HM61	116 59F	L298 76F		W94C	7F 508A171 8F 826A281	,	KAK389312F KAN333318F
71	24410F	55	7 7777	LS	201460F	7052N1 11F	D825332F INS	981P 49F	L4810CV23F	130 91	X33C	9F X80 371	32C5P	KAN333514F
61	2459F	73	F 9368PC 50F	204CB 10F	211473F 212460F	8440 50F	D82C5537F MS6: DAC800L33F PCF	3570 42F	L4960 38F		X66C3	7F \$11A 181	36C19F	KEN402812F
51	3748P	75	AD	28534F 722055F	SL	1	DAC808L36F UM6: DAC0831.104F 626	26449F	LM137K 15F		X67C3	8F 871A201	125 9F	618VHF 10F
51		78	57 536AJD361F	LT	486 43P	TEA	DAC1006.166F BF6821P21F E	PROM	LM309H30F LM311N5F	107C3F	X77	8F 13841021	14214F	
			F 712CJ 36F		529:::::214F	1818 18F	BF6850P25F 2716 BF9345P.213F 273						305510F	GLEDIN .
	373B	30	P 736JN95F OF 830AN64F		1451 193F	5500 69F	H115/4A.495F 2/3	2 12V./1F	LM3Z5H65F	160-164P	1	130541	ZENER	
61	682 29F	92	F 844AN 68F		6270 46F	6330CMS55F	ICM7170.165F 2764 ICM7217.210F 27C	64 50F	LM334815F	1738 31	115	9F 510 121	B\$4:400mW de	
51	68817F	95 10	CA CA	709B150F 957296F	6601 50P		LS7060303F 271: LT1081C87F PIC	16C54150F	LM337K51F	178B3P	158	3F 530 201	Toutes dispo	
121	40166P 401710P	107	F 3046 7F	MA	B586B47F B587B38F		MAX134C.294F PIC: MC1488P7F 27C	16C56170F	LM337SP17F LM338K92F	183B21 184C21	178	7F 540 301 5F 610 221	à 1,70 Frs	1KQ5 0w59F 2KQ2 0w59F
301	4046 17F	114	F 3080835F	T02FH 91F	SN	06110F 0629F	MC1489P7F 2725	5653F 25659F	LM350K74F LM3851,2.16F	23621 238B21	200	2F 612221	888: 1 W de	4KQ7 0W59F
81	405010F	122	F 314089F	T03FH102F	7613120F	06410F	MC348720F 275	2DC. 156F	38582V525F	239B2E	235	3F 633261	Toutes dispo	22FO 0-6 0F
57			F 3189E29F F 3240E16F F 3260E25F			0728F	MC14411.142F ESS	66112F	LM2931T26F	300-621	2426	9F 9530 491	BARTHAR	150 1W15F
191	451810F	133	F 3280E 22F	1		08210F	14411550F ESS! 145151165F ESS!	572112F	LT1070C.145F	309C 31	256C	6F 9540 501		500 1W14F
31	45435P 4010313P	137	DBX	MB	41P25F 42P49F	0847F 60443F	145157104F ESS	582127F	MC34064P.19F	327-1628	259	6F 9630 651	•	STON
4	74HCT	139	F 2150 88F	8830360F	SP	TLC	MN3004211F ESS! MN3011535F ESS!	5944.127F 5954.112F	MAX66098F MAX680C50F	328A2F	273	3F	5033-1031F 504931F	
71	004	1471	P 225288F		8640BN 225F	27L2CN12F	MN310185F ESS	5964.112F	MAX71392F	33821	321B	3F MJ	506334P	\$10K256F
51	024P	14810	DF DF	1377P66F	8650B 124F	271CP10F	PCF857447F ESSE PCF858340F ESSE	6044.112F	REF02 45F	414C 37	371	4F 802 771	5098 31F	
41	044P	153	F 1700P 304F	1416PW15P	8660 86F	27420F	PCF859188F ESS	5064.179F	TDA471884F	415C3P	451	2F 2501301	5231-1131F	BPU455K16F
	104F	155	FX	3357P39F	8680219F	556CN12F	PM7524H52F BSS	5264.113F	TL431CLP7F	516 41	458	4F 3001 241	53131331F	CSB400 20E
1	38:	158	F 118P 80F		-144111499F	4066N30F	PNA7509.408F		TL78326F	546B2F	470	5F 15003421	113C15918F	CSB56019F
	32 4P	160 27	P 224J442F SF 309250F	MH		U	R6522AP83F R6532P73F C286		U2400B34P	547C 28	472	6F 15024501	KAC618413F	FILTR SB106F
127	744F	16227	PF	Q6002139F	SS	267 24F	R6551P67F NMC	30635F	TRANSI	550C 2F	506	3F 15025951 5F 834071 5F 82955101	L4100A 18F	SFD455B 24F
51	85 9F	164	F 5195-5207F	MK	120C90196F	1096 63F	TDA1540.222F		2N	557C2F 558C2F		31 8293310	LATOIA13E	8704330307
121	939P 107P4P	166	F		M201375F M201596F		TLC1540.118F		0697510F	559B 2P	PK	омот	ION	SUR
500	1238F	169 18	F 4754180F	ML	M2016131F		TSC8703.202F	MOTE	17114F	559C2F 560A3F	TRAN	SFOS S	TOCK L	IMITES
300	1254P	173		920 168F	M2033342F M2056196F	17037F	UM5100U98F EFF	CE 25F	2218 3F	560B4P	F	IN de		
81	137 6F	175	P	481	M2110 191P	3906N66F	UVC3130.355F 2716	45P	2222met 3P	640	WATE PA	- 0 V	sõnas nagya	20
67	1396F	190	7107CMS.109F 7107CPL70F	53200 53F		N5801A72F	280BCTC28F 2712				TRZVA Z	8F T20VA2x06V	/2x30	V 92r
6P	147P6P	193	7109CPL.156F 77136CPL86F	5741047F	M222045F		280BSIO 54F 2751	290F	24844F	8794F	TR4VA 3	2F T50VA		2x30V.103F
			7 7139CPL.252F 8 8038CCJ53F		TAA	2580A30F	EN426E848F	HUUD	29043F 29053F		TRIOVA 4	4F T120VA.2x09V	72x35	V138F
71	15710F	19720	F 8048CCF. 440F	222260F	611B1223F 861A20F	314030F	EN427E8.196F EN428188F	I E UK	2906 4F		TR25VA 8	1F T160VA. 2x12	/2x18	V2x35V.138F
71	162 6F	240 7	ICM	MV	4761A25F	ULN	MEMOTRES 780	8P	29072F 2907A pl1F	11511F	1	T220VA. 2x15	72x18V	1727
142	16411F	24213	72071PD.119F 7218CIJ.113F	50052F	TBA	20018P 200310F	L78:	305 16F	30535F 305513F	135 32		T680VA	2x63V	
742	1746P	24516	F 7224IPL.196F	NE	800 13F	20048F	7810	10F	33923F	14042		T1000VA	2×40V2×60	345P
10F	238 19F	24915	F 7556 23F			288416F					NIMC (T	les 222	A B	
9	2415F	253	L	57240F 592N810F	82023F 820M8F	XR	ΣC comprer d'article d	d le	natériel	indiqué d	lans la	iste pub	O PLANS	n
197	2447P 2458P	258	F 293B 43P	592N1412F 60251F	94050F	21068F	d'article d	e la r	evue y co	ompris le	s circui	its imprim	és non pe	rcés.
67	36847	2606	F 29766F	604M71F	97038F	220829F 221147F	Realisation	t être	tenu res	sponsable	du non	fonctionn	ement des	
33F	37410P	266	P	5050W 47P	ICA	415121F	LES CIR							III.S
16F	3779F	2736	F 257H 40F	5532N16P	25045F	YM	BL 519 FEVRIER	91			BL526 S	EPTEMBRE 91		ono.
	540 9F	280 25	F 355N 11F	OM	6600 37F		519CD CAR	TE UM5100		430 F	526PRO	PROGTAMIATE	TUR DE 68705P3	646 F
127	54187	28311	P 356N11F	J61183F	758 457	710	571POR AVRIL	COMMANDE	I.R.	145 F	5278XP	EXPANDEUR I	NR	344 F
31F				0.000	78546F 9009F	40946F		OD. TTX W	ST	691 F	5275BQ	SEQUENSEUR	8 SORTIES	225 F
	57315F 57410F	32425	P 412A66F	OP	91015F	416E37F A234272F		TES C.I.	PROGRAMMABLES	1030 F	528CWV	OVEMBRE 91 COMVERTISS	BUR RS232/RS42	2 411 F
	574 CMS41F	366 7	F LM	07D16F	965 34F		522SYN SYN	THETISBUR	VOCAL STEXTS AFF.	285 F	528COV 528SYW	CONVERTIS.	12V/220V 100VA RO VIDBO/IBM-P	645 F
74C	688 11P	3736	F 12CLE 450F	16GP66F 17GP49F	4500 39F	(A)	522TXT DEC		STEXTS PPL	1718 F		ANVIRE 92		
378	40179F	377	F 308N 11F	50FY 126F		80C3279F	BT 253 JOIN AT	PTATRIM O	B PROGR. 8751	582 F	530REP	REPRODUCTE	OR DE SON	2 99 F
101F	4024 7F	390	F 312H30F	7723F	TDA	80C32-179F 8510624F		ISE 27Mhz		357 F	EL532 N		MATEUR	
156F	4051 8F	395 9	F 319N36F F 324N6F	215GP 121P	1024 31F	EF6802P35F	BL524 JUILLET	THE PERSON		455 F	532TES EL534 M		RGINITE 68705	243 F
::::129F	4060 12F	590 CMS73	F 339N5F	260GP189F	107225F	EF7910330F	524NB5 MOD 5248ON REP	EM SECTEU	R NESOSO DE SON PLL	174 F 238 F	534DEM	DEMODULATE	UR MULTILINGUE	475 P
74F	4067 339	629 21	T MAN OF	PCF		EF9366P.418F MAB803173F	524SOR REP	RODUCTBUR	DE SON COMV.		8L535 J 535CRY	UIN 92 CRYPTEUR TO	T. R DWCHT CO	1
3F	45439F	68232	F 358N5F F 360N891F	P82B71545F	1514A89F	MB3773P27F 14680585F	BL525 AOUT 91 525AC TES	TRUP P	IRGINITE EPRO	K 255 F	SSSCRY	CRIPIBUR TI	PRINCE TOUR	289 P
137	74HCU	66626	38146P	8577P73P	151640F 152228F	68705RDS268F 68705P395F	525PC PRO	GRAHOUATEU	R DE COMPOS.P	C 66 F				
14P	043P	745	382N36F 383T33F	RC	152457F	68HC11A1150F 825140F	525PL PRO		ne sont plus	43 F tenus en stoc	k mais réal:	isés à la deman	de dans les 41	heures.
		R CO	RRESPO				Bon à déc							
						•	NOM							11/94
Regle	ement à la	comman	de Forfait d	BUB- : 34	- 1kg ;		ADRESSI							1
		les bons de	commande off	iciela de l'a	deninistratio	n.	UNICOSI	ı						
Nous ac	ceptons tous					•••			Envoi :	ranco 35	Frs - Vendo	également au	magasin 25 Fre	

RÉPERTOIRE DE	S ANNONCEURS
ABONNEMENT80	LES MUTUELLES DU MANS
ADS	MAGNETIC97 MARLIN SOFTWARE86
BSO TASKING95	MECALOGIC
CEN 96 CENTRAD 44 CEP 10 CHAUVIN ARNOUX 75 CHIP SERVICE 6-7	N NATIONAL INSTRUMENTS52
CIF SERVICE	PLM
DELTA OMEGA	RADIOSPARES
ELECTRONIQUE PRATIQUE	\$ \$EFRAM54 \$ELECTRONIC76-77-4e de couv.
FLUKE	SIDENA
G GOULD	SYNTHEST
ISIT8	UNIVERSAL DEVELOPER31
LA TOLERIE PLASTIQUE52 LAYO48	X XILINX3e de couv

Une annonce gratuite est offerte une fois par an à tous nos abonnés

(joindre la dernière étiquette-adresse de la revue).

PETITES ANNONCES

VENTE DE MATERIEL - OFFRE D'EMPLOI - DIVERS

JH DUT Génie électrique DOM mobile Bicôtro 04240 L'Hay loo rooco Tól: (1) 49 78 02 72 exp proc Motorola, recherche emploi Tél: 67 40 51 10 le soir (34)

Cherche schéma ohmètre ou Radio Plans N°415 de juin 1982. Je cherche boîtes plastique ancien emballage petits Gervais. Me faire offre. Carruelle Louis /, rue Languedoc 34340 Marseillan Tél: 67 77 38 82

Recherche macro-assembleur 6811 sur Flex (6809) et sur PC recherche modules EP600/610 et EP900 pour Prologic. Recherche programmes Whimsical, Pat, Ceuric et tous autres sous FlexØ9. C. Hoffmann 114, rue de

Vds nbreux compo.: ram, eprom, P Motorola (HC11, 680x0...), Intel, Zilog... Tarif contre env timbrée M. Burgart 20, rue Sarrail 83390 Pierrefeu

Vds. pont d'impédance 6268 Metrix. Perceuse+support métal Maxicraft. Ancien numéros Radio Plans, Elec Pratique, Haut Parleur. Platine TD Thorens166MKII, ADC 280, Ampli Rotel RB870 2x110w. Enceintes Siare 2 voies+passif. Haut parleur Audax : PR30-PR17-PR130. Siare: 1x31SPCT. Tél: 93 21 10 69 (06)

Vends . Synthétiseur ERP 2000 +pedalier 1500F, ZX81+accessoires, cuve à perchlo+chassis insolation : carte 286/16, DD 40 Mo, carte multi I/O. 500F les 3. Denis Brosse, 77, av. LE-CLERC 18700 Aubigny sur Nere

Sur 3615 INFOGAME paggoz toutos vos annonces vente/achat de PC. Mac, Consoles...3615 infogame c'est le QUIZZ pour gagner des CD-Rom, la liste des Ventes aux Enchères en informatique, des trucs et astuces pour bien acheter: 3615 INFOGAME

93 Pré Saint Gervais, propriétaire loue locaux sur cour. 340 m². lover 11500 HI, tel 44 07 00 73 après 18 heures

Cherche contact avec personnes travaillant avec les CAO suivantes : ISIS/ARES, Boardmaker, Lavo, Eagle. Frais téléphoniques à ma charge. Tél : Soir 48 68 29 38 (16-1)


APPAREILS DE MESURES **ELECTRONIQUES D'OCCASION** PLUS DE MILLE APPAREILS EN STOCK: OSCILLOSCOPES, GENE-RATEURS - ETC

H.F.C. AUDIOVISUEL 68100 Mulhouse

Tél.: 89.45.52.11

Inscrivez dans la grille ci-dessous le texte de votre annonce et retournez-la accompagnée de votre règlement ou étiquette-adresse) calculé sur la base de : 55 F TTC la ligne de 31 signes ou espaces 65 F avec encadrement à : Electronique Radio-Plans - Service P.A. 70, rue Compans - 75019 PARIS

8 <	 	 	 		 	 	 		 								
				_													
NOM																	
Prénom									-								
Adresse																	
Adresse																	
Code Postal																	
Villa								T 4 1									

Utilité reconnue.

Utile la presse professionnelle? On s'en doutait. Aujourd'hui, un sondage exclusif BVA le mesure et le prouve. Ainsi, 88% des cadres d'entreprise et des artisans-commerçants ca carvant de la presse professionnelle pour comprendre leur marché. Preuve de son caractère indispensable, une très forte majorité la juge utile pour chercher de nouveaux produits (83%), développer son activité (72%) et mieux gérer son entreprise (54%). Preuve de son intérêt, 71% des lecteurs considèrent la presse professionnelle comme un veritable outil de travail et 79% déclarent que la publicité fournit elle aussi, une information utile. Quelle preuve indiscutable de l'utilité de la presse professionnelle!

LA PRESSE PROFESSIONNELLE

SA FORCE EST EN ELLE

ELECTRONIQUE RADIO PLANS est membre du

SYNDICAT DE LA PRESSE DES ENTREPRISES ET DES PROFESSIONNELS.

WAVETEK 9016
60 MHz DUAL TRACE OSCILLOSCOPE

BI-Wavetek présente une gamme complète d'oscilloscopes robustes, fiables et économiques de 20MHz à 60MHz;

Tous les oscilloscopes BI-Wavetek sont livrés avec 2 sondes x1/x10

9012E

- 2 x 20 MHz
- Testeur de composants
- Sensibilité 1mV/div
- Base de temps 0,05µs/div
- Déclenchement alterné

3795 F TTC

9020E

- 2 x 20 MHz
- Testeur de composants
- Sensibilité 1mV/div
- Base de temps 0,01µs/div
- Balayage retardé

3 990 F TTC

9016E

- 2 x 60 MHz
- Double base de temps
- Sensibilité 1mV/div
- Base de temps 0,05µs/div
- Déclenchement TV

7990 F TTC

9302E

- Mémoire numérique
- 2 x 20 MHz
- Base de temps 0,5µs/div; x 100 en mode numérique

0

- Mode 'Roll'
- Sortie analogique

7550 F TTC

BI-Wavetek c'est aussi une gamme de générateurs de fonctions à faible distortion, polyvalents, stables et souples d'emploi, dans une gamme de 0.2Hz à 2MHz.

FG2AE

1950 F TTC

- 7 calibres de 0,2 Hz à 2 MHz
- Sortie: carrée, sinus, triangle, pulse
- Rapport cyclique variable
- · Entrée VCF, Atténuation fixe, variable

FGBBE

2995 F TTC

Toutes les fonctons du FG2AE, plus:

- Compteur de fréquences internes et externes jusqu'à 100MHz
- Modulation de fréquence et d'amplitude
- Balayage linéaire ou logarithmique

Instruments

BI-Wavetek

CONDITIONS GENERALES DE VENTE

REGLEMENT A LA COMMANDE : Forfait port et emballage 28 FOO TTC

FRANCO à partir de 700 FOO

CONTRE-REMBOURSEMENT: Frais en sus selon la taxe en vigueur. Pour faciliter le traitement de votre commande, veuillez mentionner la REFERENCE COMPLETE des articles commandés.

