
APPLICATION

NOTE

OCTOBER 1982 NA-023A

Programming the EF9365/EF9366

graphic display processor

using the MPL language

Philippe THOMAS

Laboratoire d'Applications

~ lHOMSON-EFCIS
Integrated Circuits

Programming the EF9365/9366 graphic display processor (GDP) in assembler language may be, in
some applications very long and dull. Thus the possibility of using a high-level language is of interest
for more than one reason, leading to reduced programming, maintenance and debugging times. Various
high-level languages may be used with the EF6800/EF6809 microprocessors, including MPL which is
derived from PL/1 and is perfectly adapted to programming the peripheral circuits of this family.

The programming examples in this Application Note show the use of this circuit with the MPL compi­
ler. The reader should be familiar with the EF9635/EF9366 Technical Manual and with the MPL Re­
ference Manual.

THE EF9365/EF9366 GRAPHIC DISPLAY PROCESSOR

The EF9365/EF9366 is a true graphic display processor offering a high degree of flexibility in use
through the possibility for direct interfacing to any 8-bit microprocessor and the provision of 11
internal registers. The two versions available cover various display resolutions:

EF9365 : 512x512 (interlaced scanning)
256 x 256
128 x 128 (non-interlaced scanning)
64 x 64

EF9366 : 512 x 256 (non-interlaced scanning).

A programming-oriented functional schematic of the graphic display processor, subdivided into five
subsystems, is given in Figure 1. The distribution of the 11 registers within the addressable memory
space of the microprocessor is defined in Table 1.

DECODING AND CONTROL

The decoding and control subsystem comprises four registers. The command register CMD (see
Table 2) transmits all commands to the graphic display processor: plot vector, write character, verify
processor status, etc... The status register is accessible in read mode only and contains processor
status and interrupt flags (see Table 3).

"THOMSON - EFCIS Integrated Circuits

NCYRTK2019

Origin

I Register X I
I Register Y I

Vector generator Decoding and control

I Register !::'x I I CMD register I
I Register !::,y I I STATUS register I

I Register CTRL 1 I
Character generator

I I Register CTR L2

I Register CSIZE I

Light pen control

I Register X LP I
I Register YLP I

FIGURE 1 - FUNCTIONAL SCHEMATIC OF EF9365/EF9366 INTERNAL REGISTERS

THOMSON- EFCIS Integrated Circuits

ADDRESS REGISTER

Binary
r----r---;---;r---~ Hex.

A3 A2 Al AO

o 0 0 0 o
o o o
o o o
o o 3

o o o 4

o o
o o 6

o
o o o 8

o o 9

o o A

o
o o C

o D

o E

TABLE 1 - REGISTER ADDRESS

REGISTER FUNCTIONS

Read
RiW=1

STATUS

Write
RiW=o

CMD

eTA l 1 (Write control and interrupt control)

CTRL 2 (Vector and symbol type control)

CSIZE (Character ~size)

Reserved

DELTAX

Reserved

DELTAY

X MSBs

X LSBs

Y MSBs

Y LSBs

XLP (Light-pen) Reserved

YLP (Light-pen) Reserved

Reserved

Reserved

Number

of

bits

8

4

8

4

8

4

8

8

Reserved: These addresses are reserved for future versions of the circuit. In read mode, output buffers 00-07 force
a high state on the data bus.

TABLE 2 - COMMAND REGISTER

b5

1 1 1
000
o 1 1

1 1
1 1
o 0 I~b~ b4

r_----------------+---r_~--r_r_+_~~~_+~~r_r_+_~

o
o
o
o

o
o
o
1

o
o
1
o

o
o
1
1

o
1
o
o

o
1
o
1

o
1
1
o

o
1
1
1

1
o
o
o

1
1
1
o o 1 1 0 1

b3 b2 bl bO

o 0 000

o 0 0 1 1

o 0 1 0 2

o 0 1 1 3

o 1 004

o 1 0 1 5

o 1 1 0 6

o 1 1 1 7

1 0 0 0 8

1 0 0 1 9

1 0 lOA

1 0 lIB

1 1 0 0 C

1 1 OlD

1 1 1 0 E

1 1 1 1 F

o

Set bit 1 of CTAL 1 :
Pen selection

Clear bit 1 of CTRL 1 :
Eraser selection

Set bit 0 of CTRL 1 :
Pen/Eraser down selection

Clear bit 0 of CTR~ 1 :
Pen/Eraser up selection

Clear screen

X and Y registers reset to 0

X and Y reset to 0 and clear screen

Clear screen, set CSIZE to code "minsize"
All other registers reset to 0
(except X LP, Y LP)
Light-pen initialization
(WHTiE" forced low)

Light-pen initialization

5 x 8 block drawing - ------1
(size according to CSIZE)

4 x 4 block drawing
(size according to CSIZE)

Screen scanning:
Pen or Eraser as defined by CTRL1

X register reset to 0

Y register reset to 0

Direct image memory access request
for the next free cycle.

THOMSON - EFCIS

3 4 6

@ p

A Q

B R

C S

D T d

E U
F V

G W

8 H X

9 I Y

J Z

K [

< L \

M 1
> N f

o _ o

Integrated Circuits

8 9 A B C D

SMALL VECTOR DEFINITION:

b71b6 b51b4 b31b2 bl bol

1 I l6xil Ifwd Direction I
Dimension

6.x or b.y Vector length

o
o
1
1

Direction

o
1
o
1

100

o step
1 step
2 steps
3 steps

I

OTHER REGISTERS

STATUS REGISTER (Read only)

171615 T4 r3 r2 11161

I-~~ HIGH = light-pen sequence ended . (These 3 bits are not latched
L-. HIGH = vertical blanking (,dem on Pin VB) \ and not masked

HIGH = ready for a new command; LOW = busy
HIGH = pen out of display window (logical OR of the 6 MSBs of the X and Y registers)
HIGH = light-pen sequ."nce ended IRQ (if enabled) (These 3 bits are reset-after a read
HIGH = vertical blanking IRQ (If enabled) cycle of the status register.
HIGH = ready for a new command IRQ (If enabled)
IRQ: logical OR of bits 4,5,6; HIGH when IRQ output is low.

TABLE 3

CONTROL REGISTER 1 (Read/Write)

IXT 615T 4131211101 1 ~1;. HIGH = pen down; LOW = pen up (control DWoutput)
~ HIGH = pen ; LOW = eraser (control DIN output)

HIGH = high speed write :no video (BLKoutput is high, mini. of memory refresh cycles)
L __ --. HIGH = cyclic screen (memory display write even if bit 3 of the status register is high)

HIGH = enable end of the light pen sequence IRQ l
L ______ HIGH = enable VB IRQ Interrupt masks

L-_______ HIGH = enable ready for a new command IRQ
L-. _______ -I Not used (0 for reading)

X,V Final

CONTROL REGISTER 2 (Read/Write)

b1 bO Type of vectors

Type of vectors

HIGH = tilted character

HIGH = character on vertical
axis

o 0
o 1
1 0
1 1

--- continuous
------- dotted
- -- dashed
- - - - dotted-dashed

Types of character orientations

2 dots on, 2 dots off
4 dots on, 4 dots off

10 dots on, 2 dots off,
2 dots on, 2 dots off.

Iniliall
regi~t.er X, -: ,register
position position

b3 = 1, b2 = 1

TABLE 4

lHOMSON - EFCIS Integrated Circuits

Control registers CTRL 1 and CTRL2 define the writing mode selected ("pen" and "erase" modes are
used in a way analogous to their use on a plotter), interrupt modes and line types (see Table 4).

ORIGIN

The origin subsystem comprises two registers X and Y defining the origin point relative to which calcu­
lations by the graphic display processor are defined. These two registers are modified by the processor
when executing certain commands. For example, at the end of plotting a vector, registers X and Y
point to the final coordinates of the vector.

VECTOR GENERATOR

A standard vector is plotted in several steps:

• Position origin: write registers X and Y,
• Position projections along X and Y axes: write registers fiX and flY,
• Write command into corresponding register.

The GDP has a complete set of commands for plotting vectors (see Table 2) allowing the reduction of
this sequence (non-standard vectors). These cover, for example, the plotting of vectors less than 4 dots
long and vectors parallel to one axis.

CHARACTER GENERATOR

Writing the ASCII code for a character into the command register automatically plots that character
on the screen. The character size is programmed in register CSIZE with a scaling factor up to 16 in
the X or Y direction. The smallest scale corresponds to code 0001 and the largest to code 0000
(see Table 5).

C-SIZE REGISTER (Read/Write)

P Q

P : Scaling factor on X axis
Q : Scaling factor on Y axis

P and Q may take any value between 1 and 16. This value is given by the leftmost or
rightmost 4 bits for P and Q respectively. Binary value (0) means 16.

TABLE 5

THOMSON- EFCIS Integrated Circuits

LIGHT PEN CONTROL

Two 8-bit registers specify the address and status of the light pen following a light pen initialization
command (see Table 6).

XLP and YLP REGISTERS

l Status bit indicating if a rising
edge has been applied on LPCK
during the first complete frame
following light-pen initialization.
This bit is reset by a read on
XLP or YLP.

j
8 I>it YLP value

_ always 0

L-----~6 bit XLP value

TABLE 6

This outline description of the internal registers of the EF9365/EF9366 shows the possibilities offered
by the circuit. It also shows that in many applications programming this device reverts to writing an
appropriate code into each of the appropriate registers_

THE MPL LANGUAGE

MPL is a language derived from PL/1 and developed specifically for the EF6800/EF6809 microproces­
sor. It is well adapted to programming this type of device and its associated peripherals. The compiler
generates assembler source language for easy debugging, attachment to other modules written in
assembler language for easy debugging, attachment to other modules written in assembler language, for
example, and storage in ROM_ As compared with assembler language, MPL offers greater flexibility in
terms of variable manipulation, arithmetic calculations and structured programming, without losing
the visibility of the generated code and the microprocessor.

Figure 2 shows the sequencing of operations required in using the MPL compiler and the following
outline specifications give an idea of the possibilities of this language.

Variable type:

Arithmetic operator:

Logic operator:

Sequencing instructions:

binary on one or two bytes, signed or unsigned,
bit
decimal
table in up to 3 dimensions_

addition, subtraction
multiplication, division.

shift
AND, OR

IF _ .. THEN _ .. ELSE
DO ... WHILE
DO ... TO __ . ("FOR" loop)
Procedure call with entry and return of arguments

THOMSON- EFCIS Integrated Circuits

EXAMPLES OF MPL USE

MPL source Text editor

Compilation

Ves
Error?

No

Assembler

External Link editor MPL library
modules

Object code

FIGURE 2

The following program examples relate to a hardware configuration based on EFCIS Eurocard family
boards connected to the G64 bus:

- CPU board

- Graphics board

- Memory board

EFS-MPU1 (EF6800) or
EFS-MPU2 (EF6809).

EFS-VIG1 (EF9366 +ooe memory plane)
EFS-VIE1 (8-colour extension).

EFS-32U2 (RAM/REPROM).

This configuration is connected to a colour video monitor to display a 512 x 256 dot image in eight
colours (non-interlaced scanning).

THOMSON - EFCIS Integrated Circuits

The registers to be programmed are those of the EF9366 and an additional colour register defined as
shown in the table below (for simplicity, only those bits of the register relevant to this application
are defined) :

Bit Colour

b7 b6 b5 b4 b3 b2 bl bO

0 0 0 White

0 0 1 Cyan

0 1 0 Magenta

Not used in this 0 1 1 Blue

application 1 0 0 Yellow

1 0 1 Green

1 1 0 Red

1 1 1 Black

Colour register

REGISTER AND VARIABLE DECLARATION

The internal registers of the EF9366 are declared using a structure which permits various types of
variables to be mixed (the binary and bit types, for example). Not all bits of the control registers
are declared. Only those used individually in the programs are explicitly declared:

READY

PLGOM

ONOFF

Bit 2 of the STATUS register, indicating whether the circuit is ready to accept a
further command.

Bit 1 of register CTRL1, selecting the pen (PENER = 1) or eraser (PENER = 0).

Bit 0 of register CTRL1, indicating pen-eraser down (ONOFF = 1) or up (ONOFF
= 0).

Further declarations correspond to variables representing constants used in the colour register and
registers CSIZE and CTRL2.

The declaration instructions shown in Figure 3 use 3 types of variable:

- BIN Unsigned 1-byte variable
- BIN (2) Unsigned 2-byte variable
- BIT (n) n-bit variable

The n-bit variable type is used, when declared in a structure, to define an n-bit field in a specified
byte.

Pseudo-instructions DEF and CONST specify a physical variable address and a symbol value, respecti­
vely (see Figure 3).

THOMSON- EFCIS Integrated Circuits

/* **/
~ ~
1* EF 9366 DECLARATI ONS *1
1* *1
/* **/

DECLARE I GOP DEF $F820, F820=GOP address
2 STATUS, status register

3 NUSI BIT(5), not used
3 READY BIT(l) , GOP ready
3 NUS2 BIT(2), not used

2 COMAND BIN DEF STATUS, canmand register
same address as STATUS

2 CTRll, CTRLI register
3 NUS3 BIT(6), not used
3 PENER BIT(l) , pen,eraser selection
3 ON OFF BIT(l) , up, down

2 CTRL2 BIN, CTRL2 register
2 CSIZE BIN, CSI ZE register
2 NUS4, byte not used
2 DELTAX BIN, DEL TAX register
2 NUS5, byte not used
2 DELTAY BIN, DELTAY register
2 X366 BIN(2), X register
2 Y366 BIN(2) Y register

/***************************************/
~ ~
1* EXTERNAL REGISTERS AND *1
/* GLOBAL VARIABLES *1
~ ~
/***************************************/

DECLARE COLOR DEF $F831 ! color register

/* GLOBAL VARIABLES */

/* vari abIes for CSI ZE register */

DCL ZERO CONST(O) ,
ONE CONST(l) ,
TWO CONST(2) ,
THREE CONST(3) ,
FOUR CONST(4),
FIVE CONST(5),
SIX CONST(6),
SEVEN CONST(7),
EIGHT CONST(8),
NINE CONST(9),
TEN CONST($A) ,
ELEVEN CONST($B),
TWELVE CONST($C),
THIRT CONST($D) ,

FOURT CONST($E),
FIFT CONST($F),
SIXT CONST($0)

THOMSON - EFCIS Integrated Circuits

/* vari abIes for color register */

DCL WHITE CONST(O),

CYAN CONST(I) ,
MAGEN CONST(2),
BLUE CONST(3) ,
YELLOW CONST(4) ,
GREEN CONsTC 5),
RED CONST(6),
BLACK CONST(7)

/* variables for CTRL2 register */

DCL VERTI CONST(1),
HORIZ CONSTCo),
SLANT CONST(I) ,
NORMA CONSTCo) ,
CONTI CONSTCO) ,
DOTTED CONSTCl) ,
DASHED CONST(2) ,
MIXED CONST(3)

FIGURE 3

WRITING COMMON PROCEDURES

Like many other languages, MPL authorises the writing of procedures (subroutines) providing for the
entry of parameters in two forms. The most general form supports parameters of any non-subscript
type. The non-limiting list of parameters in then delimited by parentheses:

CALL I procedure name ((pl, p2, ... , pn)

The second form is limited to three parameters transmitted by accumulators A and B and register X of
the microprocessor, but generates a shorter code. Parameters in this case are delimited by the symbols
"< >":

CALL! procedure name l < pl, p2, p3 >

Setting of register CSIZE

Procedure SETSIZ initialises the X and Y scaling factors of register CSIZE. This procedure may be
called using the instruction:

CALL SETSIZ < TWO, TWO, >

which writes register CSIZE with the code 00100010.

Setting of register CTRL2

This register defines the character orientation and line type. The call may be effected as follows, for
example:

CALL SETCR2 (HORIZ, NORMA, CONTI)

which specifies non-italic characters along the horizontal axis and continuous lines. The corresponding
code is xxxxOOOO.

lHOMSON - EFCIS Integrated Circuits

/* ***************************~************* */
/* */
/* PROCEDURE SETSIZ: */
/* SET CSIZE REGISTER */
/* CALLI~: CALL SETSIZ<PI,P2,> */
/* PI: X SCALE */
/* P2: Y SCALE */
/* */
/* *** */

SETSI Z:
PROC<ECHX,ECHY,>

DECLARE ECHX BIN,
ECHY BIN

ECHX=ECHX SHIFT 4
CSIZE=ECHX lOR ECHY

RETURN
END SETSI Z

for parameters

ECHX shifted in the 4 MSB
wri te in CSI ZE

/* ************************************ */

/* */
/* PROCEDURE SETCR2 */
/* SET CNTRL2 */
/* CALLI~:CALL SETCR2(PI,P2,P3) */
/* PI: CHARACTERS */
/* ORIENTATION */
/* P2: CHARACTERS TYPE */
/* P3: TYPE OF VECTORS */
P V
/* ************************************ */

SETCR2:
PROC(PRI,PR2,PR3)

DECLARE PRI BIN, for parameters
PR2 BIN,
PR3 BIN

PRI=PRI SHIFT 3
PR2=PR2 SHIFT 2

justifies parameters in byte

CT RL 2=PRI lOR PR2 lOR PR3

RETURN
END SETCR2

FIGURE 4

lHOMSON - EFCIS Integrated Circuits

APPLICATION EXAMPLE N° 1

This example shows the procedures described above and causes a text to be displayed on the screen
in blinking mode (see Figure 6).

FIGURE 5

THOMSQN- EFCIS Integrated Circuits

/**/
/* */
/* WRITE AND FLICKER OF A TEXT */
~ V
/**/

EXl:
PROCEDURE OPTIONS(MAIN)

DECLARE MESS CHAR(30),
WAIT BIN(2)

text buffer
for delay

/* GOP initialization */

COMAND:$6 clear screen

DO WHILE READY=O
END GOP ready ?

CTRLl=$O
ONOFF=l

inhibi tion of interrupt ions
pen down

COLOR=Rffi
CALL SETSIZ<TWO,TWO,>

MESS='THOMSON-EFCIS' ! initialization of text

/* writing loop */

LOOP :

GOTO LOOP
END EXI

PENER=l pen select ion
X366=100 initialize X and Y
Y366=20

CALL WRITE<l3,,> ! write 13 characters

WAIT=20000
CALL DELAY(WAIT) ! delay

PENER=O ! select ion of erase r
X366=100
Y366=20

CALL WRITE<13,,>

WAIT=lOOOO
CALL DELAY(WAIT)

lHOMSON - EFCIS Integrated Circuits

/*************************************/

/* */
/* PROCEDURE DELAY */
/* CALLItIC: CALL DELAY(value) */
/* value<65000 */
/* */
/*************************************/

DELAY:
PRoc(Tn£)

DECLARE TIME BIN(2)

DO WHILE TIME NE 0
TIME=TIME-l

END
RETURN

END DELAY

/************************************/
/* ~
/* PROCEDURE WRITE */
/* CALLItIC: CALL WRITE<value, ,> */
/* value=NB. OF CHARACTERS */
/* value< 30 */
/* EXIT: GOP READY */
/* ~
/************************************/

WRITE:
PROC<NBCAR, ,>

/* local variables */

DECLARE TBMESS(30) BIN DEF MESS /* for ASCII conversion */
/* same address as 11ESS */

DECLARE NBCAR BIN
DECLARE N BIN

DO N= 1 TO NBCAR
COMAND= TBt1ESS(N)

END

RETURN

END WRITE

DO WHILE READY=O
END

/* wri te the caract ere */
/* wait GOP ready */

FIGURE"

lHOMSON - EFCIS Integrated Circuits

WRITING VECTORS

The vector generator of the EF9366 simplifies the plotting of vectors, the programmer needing only
to position the origin and projections of the vector. The appropriate command then runs the algorithm
of the graphic display processor which causes the vector to be plotted.

The instruction set comprises 144 codes. This optimises the plotting function but may sometimes
result in the programmer having to search for the codes corresponding to the required vector. With
the standard the end coordinates of the vector, this procedure computes the projections along the
X and Y axes and the code of the command and then sets the X and Y registers (see Figures 7 and 8).
Plotting the vector is thus reduced to calling the procedure:

CALL WRVECT (X origin, Y origin, X end, Yend).

For example, the following instruction:

CALL WRVECT (0,0,50,70) writes the registers with the following value:

X: $0000
Y: $0000

DELTAX :$32
DELTAY:$46

Command : $11

lHOMSON - EFCIS Integrated Circuits

WRVECT ")
1

Write
X andY

1
Calculate

projections

DTX.DTY

~
Calculate bits

b3. b2. bl
of command

(Direct)

i
Calculate
bit 0 of

command
(SPECL)

!
NO Small YES

vector

r
b7.b6.b5.b4 1 I b7 ·1

I = $ 1 (GTVECT) (SMVECT)

1
I b6.b5-DTX I b4.b3-DTY

1
Command =
GTVECT-
SMVECT-
DIRECT-

SPECL

T
End)

FIGURE 7

lHOMSON - EFCIS Integrated Circuits

/* *** */
~ V
/* PROCEDURE WRVECT: */
/* INPUT: ORIGIN;XO, YO (START) */
/* ;XI,Yl (END) */
/* EXIT: SET DElTAX,DElTAY,COMAND */
/* */
/* THE VECTOR MUST HAVE DEL TAX AND */
/* DELTAY <= 255 */
~ V
/* *** */
WRVECT:

PROC (XO,YO,XI,YI)

DCl XO BIN(2) ,YO BIN (2),
Xl BIN(2) ,YI BIN(2)

DCl SPECl BIN,
DIRECT BIN,
GTVECT BIN,
SMVECT BIN

/* set X am Y of GDP * /

X366=XO
Y366=YO

/* start of vector
/* em of vector
/* sp3ci al direct ion
/* direct ion
/* great vector
/* small vector

/* declarations for canputing with two bytes */

DCl DTX SIGNED BIN(2),
DTY SIGNED BIN(2)

DTX=XI-XO
DTY=Yl-YO

/* direction scanning */

IF DTX GT 0 AND DTY GE 0) THEN DIRECT=O
IF DTX lE 0 AND DTY GT 0) THEN DIRECT=2
IF DTX LTD AND DTY lE 0) THEN DIRECT=6
IF DTX GE 0 AND DTY LT 0) THEN DIRECT=4

/* sp3cial vectors scaanning */

IF (DTX =0 OR DTY =0)
THEN SPECl 0
ELSE SPECl = 1

/* conversion DTX,DTY in positive */

IF DTX IT 0 THEN DElTAX=-DTX ELSE DElTAX=DTX
IF DTY IT 0 THEN DElTAY=-DTY ELSE DElTAY=DTY

lHOMSON- EFCIS Integrated Circuits

*/
*/
*/
*/
*/
*/

/* small or great vectors scanning */

IF(DELTAX > 3 OR DELTAY > 3
THEN

DO
GTVECT =$10
SMVECT =0

END
ELSE

DO
GTVECT=O
SMVECT=$BO
DELTAX=DELTAX SHIFT 5
DELTAY=DELTAY SHIFT 3
SMVECT=SMVECT lOR DEL TAX lOR DEL TAY

END

COMAND=SMVECT lOR GTVECT lOR DIRECT lOR SPECL

RElURN
END WRVECT

FIGURES

THOMSON - EFCIS Integrated Circuits

APPLICATION EXAMPLE N° 2

The program shown in Figure 10 moves a solid rectangle along the horizontal axis. The flowshart is the
following (Figure 9).

(MOVE

Write
solid

rectangle

Init.
variables

Init.
displacement

length (LGDP)

Delete one
vertical

vector on
left

Write one
additional

vector
on right

DELAY

NO
End of

displacement

YES

(End

FIGURE 9

THOMSON - EFCIS Integrated Circuits

/***/
~ V
/* MOVING A FULL RECTANGLE */
/* */
/***/

EX2:
PROCEDURE OPTIONS(MAIN)

DCL DPX SIGNED BIN(2),
DPY SIGNED BIN(2),
DAX SIGNED BI N(2) ,
DAY SIGNED BIN(2),
WIDT SIGNED BIN(2),
EIGH SIGNED BIN(2)

start in X
start in Y
end in X
end in Y
width of rect argle
height of rectargle

DCL J BIN(2) subscript for loop

/* initialization of GOP */

COMAND=$6

CTRll=$O
PENER=l
ONIFF=l

DO WHILE READY=O
END

/* co-ordinates initialization of rectargle */

DPX=30
DPY=30
WIDT=lOO
EIGH=60

DAX=DPX+WIDT
DAY=DPY

/* write first rectargle */

DO J=l TO EIGH

END

CALL WRVECT(DPX,DPY,DAX,DAY) I call in library
DO WHILE READY=O
END

DPY=DPY+l ! incrementation of origins
DAY=DPY

/* moving of rectargle */

DCL LGDP BIN ! width of moving

lHOMSON - EFCIS Integrated Circuits

/* initialization of parameters */

LGDP=40

DPX=30
DPY=30
WIDT=lOO
EIGH=60

DAY=DPY+EIGH-l
DAX=DPX

/* locp for moving */

DO WHILE LGDP NE 0

/* clear 1 vector on left */
PENER=O

CALL WRVECT(DPX,DPY,DAX, DAY)
DO WHILE REAOY=O
END

/* wri te 1 vector on right */
PENER=l

END

END EX2

DPX =DPX+WIDT +1
DAX=DPX

CALL WRVECT(DPX,DPY,DAX,DAY)
DO WHILE READY=O
END

WAIT =300
CALL DELAY(WAIT) call in library

DPX =DPX -W IDT
DAX=DPX

LGDP=LGDP-l decrementation of subscript

FIGURE 10

THOMSON- EFCIS Integrated Circuits

USE OF MPL COMPILER

The compiler is supplied on floppy disk and comprises the operating system (MDOS or EFDOS), the
compiler (file MPL.CM) and the library (file MPLSLlB.RO).

The compilation commands for a source file are as follows (under MDOS or EFDOS) :

MPL TOTO; LSO = TOTO

This compiles file TOTO with listing of the source at the printer and creation of a compiled file TOTO.
AI (assembler source containing as commentary the corresponding MPL source instructions).

The procedure starting with file TOTO.AI is the same as that used for an assembler program:

ASBL TOTO.AI

This creates object file TOTO.RO.

Link editing may be carried out as indicated below, calling library MPLSLlB.RO and creating runnable
object file TOTO.LO :

LINK
?I F = Fl
? BASE
? LOAD = TOTO
? LIB = MPLSLlB
? OBJA= TOTO
? EXIT

USE OF USER LIBRARY

Preceeding examples have shown how procedures are used in various applications. It is beneficial to
group procedures in a library which is called at the link editing stage. This means that the programmer
need not insert these modules into all his applications, and reduces compilation time.

Procedures SETSIZ, SETCR2, TEMPO, ECRIT and WRVECT combined to constitute a single source
file GDPLlB.SA once compiled and assembled give the library file GDPLlB.RO. At link editing time
the operator then calls the two files GDPLlB.RO and MPLSLlB.RO in order to insert the procedures
used into the object file.

lHOMSON - EFCIS Integrated Circuits

NOTES

Printed in Frlll'1C8

lHOMSON- EFCIS Integrated Circuits

